
Jedi Documentation
Release 0.18.0

Jedi contributors

Dec 25, 2020

Contents

1 Docs 3

2 Resources 45

Python Module Index 47

Index 49

i

ii

Jedi Documentation, Release 0.18.0

Github Repository

Jedi is a static analysis tool for Python that is typically used in IDEs/editors plugins. Jedi has a focus on autocompletion
and goto functionality. Other features include refactoring, code search and finding references.

Jedi has a simple API to work with. There is a reference implementation as a VIM-Plugin. Autocompletion in your
REPL is also possible, IPython uses it natively and for the CPython REPL you can install it. Jedi is well tested and
bugs should be rare.

Here’s a simple example of the autocompletion feature:

>>> import jedi
>>> source = '''
... import json
... json.lo'''
>>> script = jedi.Script(source, path='example.py')
>>> script
<Script: 'example.py' ...>
>>> completions = script.complete(3, len('json.lo'))
>>> completions
[<Completion: load>, <Completion: loads>]
>>> print(completions[0].complete)
ad
>>> print(completions[0].name)
load

Autocompletion can for example look like this in jedi-vim:

Contents 1

https://github.com/davidhalter/jedi
https://github.com/davidhalter/jedi/issues
https://github.com/davidhalter/jedi/issues
https://travis-ci.org/davidhalter/jedi
https://ci.appveyor.com/project/davidhalter/jedi/branch/master
https://coveralls.io/r/davidhalter/jedi
https://pepy.tech/project/jedi
https://github.com/davidhalter/jedi
https://github.com/davidhalter/jedi-vim

Jedi Documentation, Release 0.18.0

2 Contents

CHAPTER 1

Docs

1.1 Using Jedi

Jedi is can be used with a variety of plugins, language servers <language-servers> and other software. It is also
possible to use Jedi in the Python shell or with IPython.

Below you can also find a list of recipes for type hinting.

1.1.1 Language Servers

• jedi-language-server

• python-language-server

• anakin-language-server

1.1.2 Editor Plugins

Vim

• jedi-vim

• YouCompleteMe

• deoplete-jedi

Visual Studio Code

• Python Extension

3

https://github.com/pappasam/jedi-language-server
https://github.com/palantir/python-language-server
https://github.com/muffinmad/anakin-language-server
https://github.com/davidhalter/jedi-vim
https://valloric.github.io/YouCompleteMe/
https://github.com/zchee/deoplete-jedi
https://marketplace.visualstudio.com/items?itemName=ms-python.python

Jedi Documentation, Release 0.18.0

Emacs

• Jedi.el

• elpy

• anaconda-mode

Sublime Text 2/3

• SublimeJEDI (ST2 & ST3)

• anaconda (only ST3)

SynWrite

• SynJedi

TextMate

• Textmate (Not sure if it’s actually working)

Kate

• Kate version 4.13+ supports it natively, you have to enable it, though.

Atom

• autocomplete-python-jedi

GNOME Builder

• GNOME Builder supports it natively, and is enabled by default.

Gedit

• gedi

Eric IDE

• Eric IDE (Available as a plugin)

Web Debugger

• wdb

4 Chapter 1. Docs

https://github.com/tkf/emacs-jedi
https://github.com/jorgenschaefer/elpy
https://github.com/proofit404/anaconda-mode
https://github.com/srusskih/SublimeJEDI
https://github.com/DamnWidget/anaconda
http://uvviewsoft.com/synjedi/
https://github.com/lawrenceakka/python-jedi.tmbundle
https://kate-editor.org/
https://projects.kde.org/projects/kde/applications/kate/repository/entry/addons/kate/pate/src/plugins/python_autocomplete_jedi.py?rev=KDE%2F4.13
https://atom.io/packages/autocomplete-python-jedi
https://wiki.gnome.org/Apps/Builder/
https://git.gnome.org/browse/gnome-builder/tree/plugins/jedi
https://github.com/isamert/gedi
https://eric-ide.python-projects.org
https://github.com/Kozea/wdb

Jedi Documentation, Release 0.18.0

xonsh shell

Jedi is a preinstalled extension in xonsh shell. Run the following command to enable:

xontrib load jedi

and many more!

1.1.3 Tab Completion in the Python Shell

Jedi is a dependency of IPython. Autocompletion in IPython is therefore possible without additional configuration.

Here is an example video how REPL completion can look like in a different shell.

There are two different options how you can use Jedi autocompletion in your python interpreter. One with your
custom $HOME/.pythonrc.py file and one that uses PYTHONSTARTUP.

Using PYTHONSTARTUP

To use Jedi completion in Python interpreter, add the following in your shell setup (e.g., .bashrc). This works only
on Linux/Mac, because readline is not available on Windows. If you still want Jedi autocompletion in your REPL, just
use IPython instead:

export PYTHONSTARTUP="$(python -m jedi repl)"

Then you will be able to use Jedi completer in your Python interpreter:

$ python
Python 3.9.2+ (default, Jul 20 2020, 22:15:08)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.path.join('a', 'b').split().in<TAB> # doctest: +SKIP
..dex ..sert

Using a Custom $HOME/.pythonrc.py

jedi.utils.setup_readline(namespace_module=<module ’__main__’ from
’/home/docs/checkouts/readthedocs.org/user_builds/jedi/envs/v0.18.0/bin/sphinx-
build’>, fuzzy=False)

This function sets up readline to use Jedi in a Python interactive shell.

If you want to use a custom PYTHONSTARTUP file (typically $HOME/.pythonrc.py), you can add this
piece of code:

try:
from jedi.utils import setup_readline

except ImportError:
Fallback to the stdlib readline completer if it is installed.
Taken from http://docs.python.org/2/library/rlcompleter.html
print("Jedi is not installed, falling back to readline")
try:

import readline
import rlcompleter

(continues on next page)

1.1. Using Jedi 5

https://xon.sh/contents.html
https://vimeo.com/122332037
https://docs.python.org/3/library/readline.html#module-readline

Jedi Documentation, Release 0.18.0

(continued from previous page)

readline.parse_and_bind("tab: complete")
except ImportError:

print("Readline is not installed either. No tab completion is enabled.")
else:

setup_readline()

This will fallback to the readline completer if Jedi is not installed. The readline completer will only complete
names in the global namespace, so for example:

ran<TAB>

will complete to range.

With Jedi the following code:

range(10).cou<TAB>

will complete to range(10).count, this does not work with the default cPython readline completer.

You will also need to add export PYTHONSTARTUP=$HOME/.pythonrc.py to your shell profile (usu-
ally .bash_profile or .profile if you use bash).

1.1.4 Recipes

Here are some tips on how to use Jedi efficiently.

Type Hinting

If Jedi cannot detect the type of a function argument correctly (due to the dynamic nature of Python), you can help it
by hinting the type using one of the docstring/annotation styles below. Only gradual typing will always work, all
the docstring solutions are glorified hacks and more complicated cases will probably not work.

Official Gradual Typing (Recommended)

You can read a lot about Python’s gradual typing system in the corresponding PEPs like:

• PEP 484 as an introduction

• PEP 526 for variable annotations

• PEP 589 for TypeDict

• There are probably more :)

Below you can find a few examples how you can use this feature.

Function annotations:

def myfunction(node: ProgramNode, foo: str) -> None:
"""Do something with a ``node``.

"""
node.| # complete here

Assignment, for-loop and with-statement type hints:

6 Chapter 1. Docs

https://docs.python.org/3/library/readline.html#module-readline
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0526/
https://www.python.org/dev/peps/pep-0589/

Jedi Documentation, Release 0.18.0

import typing
x: int = foo()
y: typing.Optional[int] = 3

key: str
value: Employee
for key, value in foo.items():

pass

f: Union[int, float]
with foo() as f:

print(f + 3)

PEP-0484 should be supported in its entirety. Feel free to open issues if that is not the case. You can also use stub
files.

Sphinx style

http://www.sphinx-doc.org/en/stable/domains.html#info-field-lists

def myfunction(node, foo):
"""
Do something with a ``node``.

:type node: ProgramNode
:param str foo: foo parameter description
"""
node.| # complete here

Epydoc

http://epydoc.sourceforge.net/manual-fields.html

def myfunction(node):
"""
Do something with a ``node``.

@type node: ProgramNode
"""
node.| # complete here

Numpydoc

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

In order to support the numpydoc format, you need to install the numpydoc package.

def foo(var1, var2, long_var_name='hi'):
r"""
A one-line summary that does not use variable names or the
function name.

(continues on next page)

1.1. Using Jedi 7

http://www.sphinx-doc.org/en/stable/domains.html#info-field-lists
http://epydoc.sourceforge.net/manual-fields.html
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://pypi.python.org/pypi/numpydoc

Jedi Documentation, Release 0.18.0

(continued from previous page)

...

Parameters

var1 : array_like

Array_like means all those objects -- lists, nested lists,
etc. -- that can be converted to an array. We can also
refer to variables like `var1`.

var2 : int
The type above can either refer to an actual Python type
(e.g. ``int``), or describe the type of the variable in more
detail, e.g. ``(N,) ndarray`` or ``array_like``.

long_variable_name : {'hi', 'ho'}, optional
Choices in brackets, default first when optional.

...

"""
var2.| # complete here

1.2 Features and Limitations

Jedi’s main API calls and features are:

• Autocompletion: Script.complete(); It’s also possible to get it working in your REPL (IPython, etc.)

• Goto/Type Inference: Script.goto() and Script.infer()

• Static Analysis: Script.get_names() and Script.get_syntax_errors()

• Refactorings: Script.rename(), Script.inline(), Script.extract_variable() and
Script.extract_function()

• Code Search: Script.search() and Project.search()

1.2.1 Basic Features

• Python 3.6+ support

• Ignores syntax errors and wrong indentation

• Can deal with complex module / function / class structures

• Great virtualenv/venv support

• Works great with Python’s type hinting,

• Understands stub files

• Can infer function arguments for sphinx, epydoc and basic numpydoc docstrings

• Is overall a very solid piece of software that has been refined for a long time. Bug reports are very welcome and
are usually fixed within a few weeks.

8 Chapter 1. Docs

Jedi Documentation, Release 0.18.0

1.2.2 Supported Python Features

Jedi supports many of the widely used Python features:

• builtins

• returns, yields, yield from

• tuple assignments / array indexing / dictionary indexing / star unpacking

• with-statement / exception handling

• *args / **kwargs

• decorators / lambdas / closures

• generators / iterators

• descriptors: property / staticmethod / classmethod / custom descriptors

• some magic methods: __call__, __iter__, __next__, __get__, __getitem__, __init__

• list.append(), set.add(), list.extend(), etc.

• (nested) list comprehensions / ternary expressions

• relative imports

• getattr() / __getattr__ / __getattribute__

• function annotations

• simple/typical sys.path modifications

• isinstance checks for if/while/assert

• namespace packages (includes pkgutil, pkg_resources and PEP420 namespaces)

• Django / Flask / Buildout support

• Understands Pytest fixtures

1.2.3 Limitations

In general Jedi’s limit are quite high, but for very big projects or very complex code, sometimes Jedi intentionally
stops type inference, to avoid hanging for a long time.

Additionally there are some Python patterns Jedi does not support. This is intentional and below should be a complete
list:

• Arbitrary metaclasses: Some metaclasses like enums and dataclasses are reimplemented in Jedi to make them
work. Most of the time stubs are good enough to get type inference working, even when metaclasses are
involved.

• setattr(), __import__()

• Writing to some dicts: globals(), locals(), object.__dict__

• Manipulations of instances outside the instance variables without using methods

1.2. Features and Limitations 9

Jedi Documentation, Release 0.18.0

Performance Issues

Importing numpy can be quite slow sometimes, as well as loading the builtins the first time. If you want to speed
things up, you could preload libriaries in Jedi, with preload_module(). However, once loaded, this should not be
a problem anymore. The same is true for huge modules like PySide, wx, tensorflow, pandas, etc.

Jedi does not have a very good cache layer. This is probably the biggest and only architectural issue in Jedi. Unfor-
tunately it is not easy to change that. Dave Halter is thinking about rewriting Jedi in Rust, but it has taken Jedi more
than 8 years to reach version 1.0, a rewrite will probably also take years.

1.2.4 Security

For Script

Security is an important topic for Jedi. By default, no code is executed within Jedi. As long as you write pure Python,
everything is inferred statically. If you enable load_unsafe_extensions=True for your Project and you
use builtin modules (c_builtin) Jedi will execute those modules. If you don’t trust a code base, please do not
enable that option. It might lead to arbitrary code execution.

For Interpreter

If you want security for Interpreter, do not use it. Jedi does execute properties and in general is not very
careful to avoid code execution. This is intentional: Most people trust the code bases they have imported, because at
that point a malicious code base would have had code execution already.

1.3 API Overview

Note: This documentation is mostly for Plugin developers, who want to improve their editors/IDE with Jedi.

The API consists of a few different parts:

• The main starting points for complete/goto: Script and Interpreter. If you work with Jedi you want to
understand these classes first.

• API Result Classes

• Python Versions/Virtualenv Support with functions like find_system_environments() and
find_virtualenvs()

• A way to work with different Folders / Projects

• Helpful functions: preload_module() and set_debug_function()

The methods that you are most likely going to use to work with Jedi are the following ones:

Script.complete Completes objects under the cursor.
Script.goto Goes to the name that defined the object under the cur-

sor.
Script.infer Return the definitions of under the cursor.
Script.help Used to display a help window to users.
Script.get_signatures Return the function object of the call under the cursor.

Continued on next page

10 Chapter 1. Docs

https://github.com/davidhalter/jedi/issues/1059

Jedi Documentation, Release 0.18.0

Table 1 – continued from previous page
Script.get_references Lists all references of a variable in a project.
Script.get_context Returns the scope context under the cursor.
Script.get_names Returns names defined in the current file.
Script.get_syntax_errors Lists all syntax errors in the current file.
Script.rename Renames all references of the variable under the cursor.
Script.inline Inlines a variable under the cursor.
Script.extract_variable Moves an expression to a new statemenet.
Script.extract_function Moves an expression to a new function.
Script.search Searches a name in the current file.
Script.complete_search Like Script.search(), but completes that string.
Project.search Searches a name in the whole project.
Project.complete_search Like Script.search(), but completes that string.

1.3.1 Script

class jedi.Script(code=None, *, path=None, environment=None, project=None)
A Script is the base for completions, goto or whatever you want to do with Jedi. The counter part of this class
is Interpreter, which works with actual dictionaries and can work with a REPL. This class should be used
when a user edits code in an editor.

You can either use the code parameter or path to read a file. Usually you’re going to want to use both of them
(in an editor).

The Script’s sys.path is very customizable:

• If project is provided with a sys_path, that is going to be used.

• If environment is provided, its sys.path will be used (see Environment.get_sys_path);

• Otherwise sys.path will match that of the default environment of Jedi, which typically matches the sys
path that was used at the time when Jedi was imported.

Most methods have a line and a column parameter. Lines in Jedi are always 1-based and columns are always
zero based. To avoid repetition they are not always documented. You can omit both line and column. Jedi will
then just do whatever action you are calling at the end of the file. If you provide only the line, just will complete
at the end of that line.

Warning: By default jedi.settings.fast_parser is enabled, which means that parso reuses
modules (i.e. they are not immutable). With this setting Jedi is not thread safe and it is also not safe to use
multiple Script instances and its definitions at the same time.

If you are a normal plugin developer this should not be an issue. It is an issue for people that do more
complex stuff with Jedi.

This is purely a performance optimization and works pretty well for all typical usages, however consider to
turn the setting off if it causes you problems. See also this discussion.

Parameters

• code (str) – The source code of the current file, separated by newlines.

• path (str or pathlib.Path or None) – The path of the file in the file system, or
'' if it hasn’t been saved yet.

• environment (Environment) – Provide a predefined Environment to work with a spe-
cific Python version or virtualenv.

1.3. API Overview 11

https://github.com/davidhalter/jedi/issues/1240
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None

Jedi Documentation, Release 0.18.0

• project (Project) – Provide a Project to make sure finding references works well,
because the right folder is searched. There are also ways to modify the sys path and other
things.

complete(line=None, column=None, *, fuzzy=False)
Completes objects under the cursor.

Those objects contain information about the completions, more than just names.

Parameters fuzzy – Default False. Will return fuzzy completions, which means that e.g. ooa
will match foobar.

Returns Completion objects, sorted by name. Normal names appear before “private” names that
start with _ and those appear before magic methods and name mangled names that start with
__.

Return type list of Completion

infer(line=None, column=None, *, only_stubs=False, prefer_stubs=False)
Return the definitions of under the cursor. It is basically a wrapper around Jedi’s type inference.

This method follows complicated paths and returns the end, not the first definition. The big difference
between goto() and infer() is that goto() doesn’t follow imports and statements. Multiple objects
may be returned, because depending on an option you can have two different versions of a function.

Parameters

• only_stubs – Only return stubs for this method.

• prefer_stubs – Prefer stubs to Python objects for this method.

Return type list of Name

goto(line=None, column=None, *, follow_imports=False, follow_builtin_imports=False,
only_stubs=False, prefer_stubs=False)

Goes to the name that defined the object under the cursor. Optionally you can follow imports. Multiple
objects may be returned, depending on an if you can have two different versions of a function.

Parameters

• follow_imports – The method will follow imports.

• follow_builtin_imports – If follow_imports is True will try to look up
names in builtins (i.e. compiled or extension modules).

• only_stubs – Only return stubs for this method.

• prefer_stubs – Prefer stubs to Python objects for this method.

Return type list of Name

search(string, *, all_scopes=False)
Searches a name in the current file. For a description of how the search string should look like, please have
a look at Project.search().

Parameters all_scopes (bool) – Default False; searches not only for definitions on the top
level of a module level, but also in functions and classes.

Yields Name

complete_search(string, **kwargs)
Like Script.search(), but completes that string. If you want to have all possible definitions in a file
you can also provide an empty string.

Parameters

12 Chapter 1. Docs

https://docs.python.org/3/library/functions.html#bool

Jedi Documentation, Release 0.18.0

• all_scopes (bool) – Default False; searches not only for definitions on the top level
of a module level, but also in functions and classes.

• fuzzy – Default False. Will return fuzzy completions, which means that e.g. ooa will
match foobar.

Yields Completion

help(line=None, column=None)
Used to display a help window to users. Uses Script.goto() and returns additional definitions for
keywords and operators.

Typically you will want to display BaseName.docstring() to the user for all the returned definitions.

The additional definitions are Name(...).type == 'keyword'. These definitions do not have a lot
of value apart from their docstring attribute, which contains the output of Python’s help() function.

Return type list of Name

get_references(line=None, column=None, **kwargs)
Lists all references of a variable in a project. Since this can be quite hard to do for Jedi, if it is too
complicated, Jedi will stop searching.

Parameters

• include_builtins – Default True. If False, checks if a reference is a builtin (e.g.
sys) and in that case does not return it.

• scope – Default 'project'. If 'file', include references in the current module
only.

Return type list of Name

get_signatures(line=None, column=None)
Return the function object of the call under the cursor.

E.g. if the cursor is here:

abs(# <-- cursor is here

This would return the abs function. On the other hand:

abs()# <-- cursor is here

This would return an empty list..

Return type list of Signature

get_context(line=None, column=None)
Returns the scope context under the cursor. This basically means the function, class or module where the
cursor is at.

Return type Name

get_names(**kwargs)
Returns names defined in the current file.

Parameters

• all_scopes – If True lists the names of all scopes instead of only the module names-
pace.

• definitions – If True lists the names that have been defined by a class, function or a
statement (a = b returns a).

1.3. API Overview 13

https://docs.python.org/3/library/functions.html#bool

Jedi Documentation, Release 0.18.0

• references – If True lists all the names that are not listed by definitions=True.
E.g. a = b returns b.

Return type list of Name

get_syntax_errors()
Lists all syntax errors in the current file.

Return type list of SyntaxError

rename(line=None, column=None, *, new_name)
Renames all references of the variable under the cursor.

Parameters new_name – The variable under the cursor will be renamed to this string.

Raises RefactoringError

Return type Refactoring

extract_variable(line, column, *, new_name, until_line=None, until_column=None)
Moves an expression to a new statemenet.

For example if you have the cursor on foo and provide a new_name called bar:

foo = 3.1
x = int(foo + 1)

the code above will become:

foo = 3.1
bar = foo + 1
x = int(bar)

Parameters

• new_name – The expression under the cursor will be renamed to this string.

• until_line (int) – The the selection range ends at this line, when omitted, Jedi will
be clever and try to define the range itself.

• until_column (int) – The the selection range ends at this column, when omitted, Jedi
will be clever and try to define the range itself.

Raises RefactoringError

Return type Refactoring

extract_function(line, column, *, new_name, until_line=None, until_column=None)
Moves an expression to a new function.

For example if you have the cursor on foo and provide a new_name called bar:

global_var = 3

def x():
foo = 3.1
x = int(foo + 1 + global_var)

the code above will become:

14 Chapter 1. Docs

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Jedi Documentation, Release 0.18.0

global_var = 3

def bar(foo):
return int(foo + 1 + global_var)

def x():
foo = 3.1
x = bar(foo)

Parameters

• new_name – The expression under the cursor will be replaced with a function with this
name.

• until_line (int) – The the selection range ends at this line, when omitted, Jedi will
be clever and try to define the range itself.

• until_column (int) – The the selection range ends at this column, when omitted, Jedi
will be clever and try to define the range itself.

Raises RefactoringError

Return type Refactoring

inline(line=None, column=None)
Inlines a variable under the cursor. This is basically the opposite of extracting a variable. For example
with the cursor on bar:

foo = 3.1
bar = foo + 1
x = int(bar)

the code above will become:

foo = 3.1
x = int(foo + 1)

Raises RefactoringError

Return type Refactoring

1.3.2 Interpreter

class jedi.Interpreter(code, namespaces, **kwds)
Jedi’s API for Python REPLs.

Implements all of the methods that are present in Script as well.

In addition to completions that normal REPL completion does like str.upper, Jedi also supports code com-
pletion based on static code analysis. For example Jedi will complete str().upper.

>>> from os.path import join
>>> namespace = locals()
>>> script = Interpreter('join("").up', [namespace])
>>> print(script.complete()[0].name)
upper

All keyword arguments are same as the arguments for Script.

1.3. API Overview 15

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Jedi Documentation, Release 0.18.0

Parameters

• code (str) – Code to parse.

• namespaces (typing.List[dict]) – A list of namespace dictionaries such as the
one returned by globals() and locals().

1.3.3 Projects

Projects are a way to handle Python projects within Jedi. For simpler plugins you might not want to deal with projects,
but if you want to give the user more flexibility to define sys paths and Python interpreters for a project, Project is
the perfect way to allow for that.

Projects can be saved to disk and loaded again, to allow project definitions to be used across repositories.

jedi.get_default_project(path=None)
If a project is not defined by the user, Jedi tries to define a project by itself as well as possible. Jedi traverses
folders until it finds one of the following:

1. A .jedi/config.json

2. One of the following files: setup.py, .git, .hg, requirements.txt and MANIFEST.in.

class jedi.Project(path, **kwargs)
Projects are a simple way to manage Python folders and define how Jedi does import resolution. It is mostly
used as a parameter to Script. Additionally there are functions to search a whole project.

Parameters

• path – The base path for this project.

• environment_path – The Python executable path, typically the path of a virtual envi-
ronment.

• load_unsafe_extensions – Default False, Loads extensions that are not in the sys
path and in the local directories. With this option enabled, this is potentially unsafe if you
clone a git repository and analyze it’s code, because those compiled extensions will be
important and therefore have execution privileges.

• sys_path – list of str. You can override the sys path if you want. By default the sys.
path. is generated by the environment (virtualenvs, etc).

• added_sys_path – list of str. Adds these paths at the end of the sys path.

• smart_sys_path – If this is enabled (default), adds paths from local directories. Other-
wise you will have to rely on your packages being properly configured on the sys.path.

classmethod load(path)
Loads a project from a specific path. You should not provide the path to .jedi/project.json, but
rather the path to the project folder.

Parameters path – The path of the directory you want to use as a project.

save()
Saves the project configuration in the project in .jedi/project.json.

path
The base path for this project.

sys_path
The sys path provided to this project. This can be None and in that case will be auto generated.

16 Chapter 1. Docs

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#globals
https://docs.python.org/3/library/functions.html#locals

Jedi Documentation, Release 0.18.0

smart_sys_path
If the sys path is going to be calculated in a smart way, where additional paths are added.

load_unsafe_extensions
Wheter the project loads unsafe extensions.

search(string, *, all_scopes=False)
Searches a name in the whole project. If the project is very big, at some point Jedi will stop searching.
However it’s also very much recommended to not exhaust the generator. Just display the first ten results to
the user.

There are currently three different search patterns:

• foo to search for a definition foo in any file or a file called foo.py or foo.pyi.

• foo.bar to search for the foo and then an attribute bar in it.

• class foo.bar.Bar or def foo.bar.baz to search for a specific API type.

Parameters all_scopes (bool) – Default False; searches not only for definitions on the top
level of a module level, but also in functions and classes.

Yields Name

complete_search(string, **kwargs)
Like Script.search(), but completes that string. An empty string lists all definitions in a project, so
be careful with that.

Parameters all_scopes (bool) – Default False; searches not only for definitions on the top
level of a module level, but also in functions and classes.

Yields Completion

1.3.4 Environments

Environments are a way to activate different Python versions or Virtualenvs for static analysis. The Python binary in
that environment is going to be executed.

jedi.find_system_environments(*, env_vars=None)
Ignores virtualenvs and returns the Python versions that were installed on your system. This might return
nothing, if you’re running Python e.g. from a portable version.

The environments are sorted from latest to oldest Python version.

Yields Environment

jedi.find_virtualenvs(paths=None, *, safe=True, use_environment_vars=True)

Parameters

• paths – A list of paths in your file system to be scanned for Virtualenvs. It will search in
these paths and potentially execute the Python binaries.

• safe – Default True. In case this is False, it will allow this function to execute potential
python environments. An attacker might be able to drop an executable in a path this function
is searching by default. If the executable has not been installed by root, it will not be
executed.

• use_environment_vars – Default True. If True, the VIRTUAL_ENV variable will
be checked if it contains a valid VirtualEnv. CONDA_PREFIX will be checked to see if it
contains a valid conda environment.

1.3. API Overview 17

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Jedi Documentation, Release 0.18.0

Yields Environment

jedi.get_system_environment(version, *, env_vars=None)
Return the first Python environment found for a string of the form ‘X.Y’ where X and Y are the major and minor
versions of Python.

Raises InvalidPythonEnvironment

Returns Environment

jedi.create_environment(path, *, safe=True, env_vars=None)
Make it possible to manually create an Environment object by specifying a Virtualenv path or an executable path
and optional environment variables.

Raises InvalidPythonEnvironment

Returns Environment

jedi.get_default_environment()
Tries to return an active Virtualenv or conda environment. If there is no VIRTUAL_ENV variable or no
CONDA_PREFIX variable set set it will return the latest Python version installed on the system. This makes it
possible to use as many new Python features as possible when using autocompletion and other functionality.

Returns Environment

exception jedi.InvalidPythonEnvironment
If you see this exception, the Python executable or Virtualenv you have been trying to use is probably not a
correct Python version.

class jedi.api.environment.Environment(executable, env_vars=None)
This class is supposed to be created by internal Jedi architecture. You should not create it directly. Please use
create_environment or the other functions instead. It is then returned by that function.

get_sys_path()
The sys path for this environment. Does not include potential modifications from e.g. appending to sys.
path.

Returns list of str

1.3.5 Helper Functions

jedi.preload_module(*modules)
Preloading modules tells Jedi to load a module now, instead of lazy parsing of modules. This can be useful for
IDEs, to control which modules to load on startup.

Parameters modules – different module names, list of string.

jedi.set_debug_function(func_cb=<function print_to_stdout>, warnings=True, notices=True,
speed=True)

Define a callback debug function to get all the debug messages.

If you don’t specify any arguments, debug messages will be printed to stdout.

Parameters func_cb – The callback function for debug messages.

1.3.6 Errors

exception jedi.InternalError
This error might happen a subprocess is crashing. The reason for this is usually broken C code in third party

18 Chapter 1. Docs

https://docs.python.org/3/library/sys.html#sys.path
https://docs.python.org/3/library/sys.html#sys.path

Jedi Documentation, Release 0.18.0

libraries. This is not a very common thing and it is safe to use Jedi again. However using the same calls might
result in the same error again.

exception jedi.RefactoringError
Refactorings can fail for various reasons. So if you work with refactorings like Script.rename(),
Script.inline(), Script.extract_variable() and Script.extract_function(), make
sure to catch these. The descriptions in the errors are ususally valuable for end users.

A typical RefactoringError would tell the user that inlining is not possible if no name is under the cursor.

1.3.7 Examples

Completions

>>> import jedi
>>> code = '''import json; json.l'''
>>> script = jedi.Script(code, path='example.py')
>>> script
<Script: 'example.py' <SameEnvironment: 3.9.0 in /usr>>
>>> completions = script.complete(1, 19)
>>> completions
[<Completion: load>, <Completion: loads>]
>>> completions[1]
<Completion: loads>
>>> completions[1].complete
'oads'
>>> completions[1].name
'loads'

Type Inference / Goto

>>> import jedi
>>> code = '''\
... def my_func():
... print 'called'
...
... alias = my_func
... my_list = [1, None, alias]
... inception = my_list[2]
...
... inception()'''
>>> script = jedi.Script(code)
>>>
>>> script.goto(8, 1)
[<Name full_name='__main__.inception', description='inception = my_list[2]'>]
>>>
>>> script.infer(8, 1)
[<Name full_name='__main__.my_func', description='def my_func'>]

References

1.3. API Overview 19

Jedi Documentation, Release 0.18.0

>>> import jedi
>>> code = '''\
... x = 3
... if 1 == 2:
... x = 4
... else:
... del x'''
>>> script = jedi.Script(code)
>>> rns = script.get_references(5, 8)
>>> rns
[<Name full_name='__main__.x', description='x = 3'>,
<Name full_name='__main__.x', description='x = 4'>,
<Name full_name='__main__.x', description='del x'>]

>>> rns[1].line
3
>>> rns[1].column
4

1.3.8 Deprecations

The deprecation process is as follows:

1. A deprecation is announced in any release.

2. The next major release removes the deprecated functionality.

1.4 API Return Classes

1.4.1 Abstract Base Class

class jedi.api.classes.BaseName(inference_state, name)
Bases: object

The base class for all definitions, completions and signatures.

module_path
Shows the file path of a module. e.g. /usr/lib/python3.9/os.py

name
Name of variable/function/class/module.

For example, for x = None it returns 'x'.

Return type str or None

type
The type of the definition.

Here is an example of the value of this attribute. Let’s consider the following source. As what is in
variable is unambiguous to Jedi, jedi.Script.infer() should return a list of definition for sys,
f, C and x.

>>> from jedi import Script
>>> source = '''
... import keyword
...

(continues on next page)

20 Chapter 1. Docs

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Jedi Documentation, Release 0.18.0

(continued from previous page)

... class C:

... pass

...

... class D:

... pass

...

... x = D()

...

... def f():

... pass

...

... for variable in [keyword, f, C, x]:

... variable'''

>>> script = Script(source)
>>> defs = script.infer()

Before showing what is in defs, let’s sort it by line so that it is easy to relate the result to the source
code.

>>> defs = sorted(defs, key=lambda d: d.line)
>>> print(defs) # doctest: +NORMALIZE_WHITESPACE
[<Name full_name='keyword', description='module keyword'>,
<Name full_name='__main__.C', description='class C'>,
<Name full_name='__main__.D', description='instance D'>,
<Name full_name='__main__.f', description='def f'>]

Finally, here is what you can get from type:

>>> defs = [d.type for d in defs]
>>> defs[0]
'module'
>>> defs[1]
'class'
>>> defs[2]
'instance'
>>> defs[3]
'function'

Valid values for type are module, class, instance, function, param, path, keyword,
property and statement.

module_name
The module name, a bit similar to what __name__ is in a random Python module.

>>> from jedi import Script
>>> source = 'import json'
>>> script = Script(source, path='example.py')
>>> d = script.infer()[0]
>>> print(d.module_name) # doctest: +ELLIPSIS
json

in_builtin_module()
Returns True, if this is a builtin module.

line
The line where the definition occurs (starting with 1).

1.4. API Return Classes 21

Jedi Documentation, Release 0.18.0

column
The column where the definition occurs (starting with 0).

get_definition_start_position()
The (row, column) of the start of the definition range. Rows start with 1, columns start with 0.

Return type Optional[Tuple[int, int]]

get_definition_end_position()
The (row, column) of the end of the definition range. Rows start with 1, columns start with 0.

Return type Optional[Tuple[int, int]]

docstring(raw=False, fast=True)
Return a document string for this completion object.

Example:

>>> from jedi import Script
>>> source = '''\
... def f(a, b=1):
... "Document for function f."
... '''
>>> script = Script(source, path='example.py')
>>> doc = script.infer(1, len('def f'))[0].docstring()
>>> print(doc)
f(a, b=1)
<BLANKLINE>
Document for function f.

Notice that useful extra information is added to the actual docstring, e.g. function signatures are prepended
to their docstrings. If you need the actual docstring, use raw=True instead.

>>> print(script.infer(1, len('def f'))[0].docstring(raw=True))
Document for function f.

Parameters fast – Don’t follow imports that are only one level deep like import foo, but
follow from foo import bar. This makes sense for speed reasons. Completing import
a is slow if you use the foo.docstring(fast=False) on every object, because it
parses all libraries starting with a.

description
A description of the Name object, which is heavily used in testing. e.g. for isinstance it returns def
isinstance.

Example:

>>> from jedi import Script
>>> source = '''
... def f():
... pass
...
... class C:
... pass
...
... variable = f if random.choice([0,1]) else C'''
>>> script = Script(source) # line is maximum by default
>>> defs = script.infer(column=3)
>>> defs = sorted(defs, key=lambda d: d.line)

(continues on next page)

22 Chapter 1. Docs

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Jedi Documentation, Release 0.18.0

(continued from previous page)

>>> print(defs) # doctest: +NORMALIZE_WHITESPACE
[<Name full_name='__main__.f', description='def f'>,
<Name full_name='__main__.C', description='class C'>]

>>> str(defs[0].description)
'def f'
>>> str(defs[1].description)
'class C'

full_name
Dot-separated path of this object.

It is in the form of <module>[.<submodule>[...]][.<object>]. It is useful when you want to
look up Python manual of the object at hand.

Example:

>>> from jedi import Script
>>> source = '''
... import os
... os.path.join'''
>>> script = Script(source, path='example.py')
>>> print(script.infer(3, len('os.path.join'))[0].full_name)
os.path.join

Notice that it returns 'os.path.join' instead of (for example) 'posixpath.join'. This is not
correct, since the modules name would be <module 'posixpath' ...>`. However most users find
the latter more practical.

is_stub()
Returns True if the current name is defined in a stub file.

is_side_effect()
Checks if a name is defined as self.foo = 3. In case of self, this function would return False, for foo
it would return True.

goto(*, follow_imports=False, follow_builtin_imports=False, only_stubs=False, prefer_stubs=False)
Like Script.goto() (also supports the same params), but does it for the current name. This is typically
useful if you are using something like Script.get_names().

Parameters

• follow_imports – The goto call will follow imports.

• follow_builtin_imports – If follow_imports is True will try to look up names in
builtins (i.e. compiled or extension modules).

• only_stubs – Only return stubs for this goto call.

• prefer_stubs – Prefer stubs to Python objects for this goto call.

Return type list of Name

infer(*, only_stubs=False, prefer_stubs=False)
Like Script.infer(), it can be useful to understand which type the current name has.

Return the actual definitions. I strongly recommend not using it for your completions, because it might
slow down Jedi. If you want to read only a few objects (<=20), it might be useful, especially to get the
original docstrings. The basic problem of this function is that it follows all results. This means with 1000
completions (e.g. numpy), it’s just very, very slow.

Parameters

1.4. API Return Classes 23

Jedi Documentation, Release 0.18.0

• only_stubs – Only return stubs for this goto call.

• prefer_stubs – Prefer stubs to Python objects for this type inference call.

Return type list of Name

parent()
Returns the parent scope of this identifier.

Return type Name

get_line_code(before=0, after=0)
Returns the line of code where this object was defined.

Parameters

• before – Add n lines before the current line to the output.

• after – Add n lines after the current line to the output.

Return str Returns the line(s) of code or an empty string if it’s a builtin.

get_signatures()
Returns all potential signatures for a function or a class. Multiple signatures are typical if you use Python
stubs with @overload.

Return type list of BaseSignature

execute()
Uses type inference to “execute” this identifier and returns the executed objects.

Return type list of Name

get_type_hint()
Returns type hints like Iterable[int] or Union[int, str].

This method might be quite slow, especially for functions. The problem is finding executions for those
functions to return something like Callable[[int, str], str].

Return type str

1.4.2 Name

class jedi.api.classes.Name(inference_state, definition)
Bases: jedi.api.classes.BaseName

Name objects are returned from many different APIs including Script.goto() or Script.infer().

defined_names()
List sub-definitions (e.g., methods in class).

Return type list of Name

is_definition()
Returns True, if defined as a name in a statement, function or class. Returns False, if it’s a reference to
such a definition.

1.4.3 Completion

class jedi.api.classes.Completion(inference_state, name, stack, like_name_length, is_fuzzy,
cached_name=None)

Bases: jedi.api.classes.BaseName

24 Chapter 1. Docs

https://docs.python.org/3/library/stdtypes.html#str

Jedi Documentation, Release 0.18.0

Completion objects are returned from Script.complete(). They provide additional information about
a completion.

complete
Only works with non-fuzzy completions. Returns None if fuzzy completions are used.

Return the rest of the word, e.g. completing isinstance:

isinstan# <-- Cursor is here

would return the string ‘ce’. It also adds additional stuff, depending on your settings.py.

Assuming the following function definition:

def foo(param=0):
pass

completing foo(par would give a Completion which complete would be am=.

name_with_symbols
Similar to name, but like name returns also the symbols, for example assuming the following function
definition:

def foo(param=0):
pass

completing foo(would give a Completion which name_with_symbols would be “param=”.

docstring(raw=False, fast=True)
Documented under BaseName.docstring().

type
Documented under BaseName.type().

get_completion_prefix_length()
Returns the length of the prefix being completed. For example, completing isinstance:

isinstan# <-- Cursor is here

would return 8, because len(‘isinstan’) == 8.

Assuming the following function definition:

def foo(param=0):
pass

completing foo(par would return 3.

1.4.4 BaseSignature

class jedi.api.classes.BaseSignature(inference_state, signature)
Bases: jedi.api.classes.Name

These signatures are returned by BaseName.get_signatures() calls.

params
Returns definitions for all parameters that a signature defines. This includes stuff like *args and
**kwargs.

Return type list of ParamName

1.4. API Return Classes 25

Jedi Documentation, Release 0.18.0

to_string()
Returns a text representation of the signature. This could for example look like foo(bar, baz:
int, **kwargs).

Return type str

1.4.5 Signature

class jedi.api.classes.Signature(inference_state, signature, call_details)
Bases: jedi.api.classes.BaseSignature

A full signature object is the return value of Script.get_signatures().

index
Returns the param index of the current cursor position. Returns None if the index cannot be found in the
curent call.

Return type int

bracket_start
Returns a line/column tuple of the bracket that is responsible for the last function call. The first line is 1
and the first column 0.

Return type int, int

1.4.6 ParamName

class jedi.api.classes.ParamName(inference_state, definition)
Bases: jedi.api.classes.Name

infer_default()
Returns default values like the 1 of def foo(x=1):.

Return type list of Name

infer_annotation(**kwargs)

Parameters execute_annotation – Default True; If False, values are not executed and
classes are returned instead of instances.

Return type list of Name

to_string()
Returns a simple representation of a param, like f: Callable[..., Any].

Return type str

kind
Returns an enum instance of inspect’s Parameter enum.

Return type inspect.Parameter.kind

1.4.7 Refactoring

class jedi.api.refactoring.Refactoring(inference_state, file_to_node_changes, renames=())
Bases: object

get_renames()→ Iterable[Tuple[pathlib.Path, pathlib.Path]]
Files can be renamed in a refactoring.

26 Chapter 1. Docs

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/inspect.html#module-inspect
https://docs.python.org/3/library/inspect.html#inspect.Parameter.kind
https://docs.python.org/3/library/functions.html#object

Jedi Documentation, Release 0.18.0

apply()
Applies the whole refactoring to the files, which includes renames.

class jedi.api.errors.SyntaxError(parso_error)
Bases: object

Syntax errors are generated by Script.get_syntax_errors().

line
The line where the error starts (starting with 1).

column
The column where the error starts (starting with 0).

until_line
The line where the error ends (starting with 1).

until_column
The column where the error ends (starting with 0).

1.5 Installation and Configuration

Warning: Most people will want to install Jedi as a submodule/vendored and not through pip/system wide. The
reason for this is that it makes sense that the plugin that uses Jedi has always access to it. Otherwise Jedi will
not work properly when virtualenvs are activated. So please read the documentation of your editor/IDE plugin to
install Jedi.

For plugin developers, Jedi works best if it is always available. Vendoring is a pretty good option for that.

You can either include Jedi as a submodule in your text editor plugin (like jedi-vim does by default), or you can install
it systemwide.

Note: This just installs the Jedi library, not the editor plugins. For information about how to make it work with your
editor, refer to the corresponding documentation.

1.5.1 The normal way

Most people use Jedi with a editor plugins. Typically you install Jedi by installing an editor plugin. No necessary
steps are needed. Just take a look at the instructions for the plugin.

1.5.2 With pip

On any system you can install Jedi directly from the Python package index using pip:

sudo pip install jedi

If you want to install the current development version (master branch):

sudo pip install -e git://github.com/davidhalter/jedi.git#egg=jedi

1.5. Installation and Configuration 27

https://docs.python.org/3/library/functions.html#object
https://github.com/davidhalter/jedi-vim

Jedi Documentation, Release 0.18.0

1.5.3 System-wide installation via a package manager

Arch Linux

You can install Jedi directly from official Arch Linux packages:

• python-jedi

(There is also a packaged version of the vim plugin available: vim-jedi at Arch Linux.)

Debian

Debian packages are available in the unstable repository.

Others

We are in the discussion of adding Jedi to the Fedora repositories.

1.5.4 Manual installation from GitHub

If you prefer not to use an automated package installer, you can clone the source from GitHub and install it manually.
To install it, run these commands:

git clone --recurse-submodules https://github.com/davidhalter/jedi
cd jedi
sudo python setup.py install

1.5.5 Inclusion as a submodule

If you use an editor plugin like jedi-vim, you can simply include Jedi as a git submodule of the plugin directory. Vim
plugin managers like Vundle or Pathogen make it very easy to keep submodules up to date.

1.6 Settings

This module contains variables with global Jedi settings. To change the behavior of Jedi, change the variables defined
in jedi.settings.

Plugins should expose an interface so that the user can adjust the configuration.

Example usage:

from jedi import settings
settings.case_insensitive_completion = True

1.6.1 Completion output

jedi.settings.case_insensitive_completion = True
Completions are by default case insensitive.

jedi.settings.add_bracket_after_function = False
Adds an opening bracket after a function for completions.

28 Chapter 1. Docs

https://www.archlinux.org/packages/community/any/python-jedi/
https://www.archlinux.org/packages/community/any/vim-jedi/
https://packages.debian.org/search?keywords=python%20jedi
https://github.com/davidhalter/jedi-vim
https://github.com/gmarik/vundle
https://github.com/tpope/vim-pathogen

Jedi Documentation, Release 0.18.0

1.6.2 Filesystem cache

jedi.settings.cache_directory = '/home/docs/.cache/jedi'
The path where the cache is stored.

On Linux, this defaults to ~/.cache/jedi/, on OS X to ~/Library/Caches/Jedi/ and on Windows
to %LOCALAPPDATA%\Jedi\Jedi\. On Linux, if the environment variable $XDG_CACHE_HOME is set,
$XDG_CACHE_HOME/jedi is used instead of the default one.

1.6.3 Parser

jedi.settings.fast_parser = True
Uses Parso’s diff parser. If it is enabled, this might cause issues, please read the warning on Script. This
feature makes it possible to only parse the parts again that have changed, while reusing the rest of the syntax
tree.

1.6.4 Dynamic stuff

jedi.settings.dynamic_array_additions = True
check for append, etc. on arrays: [], {}, () as well as list/set calls.

jedi.settings.dynamic_params = True
A dynamic param completion, finds the callees of the function, which define the params of a function.

jedi.settings.dynamic_params_for_other_modules = True
Do the same for other modules.

jedi.settings.auto_import_modules = ['gi']
Modules that will not be analyzed but imported, if they contain Python code. This improves autocompletion for
libraries that use setattr or globals() modifications a lot.

1.6.5 Caching

jedi.settings.call_signatures_validity = 3.0
Finding function calls might be slow (0.1-0.5s). This is not acceptible for normal writing. Therefore cache it for
a short time.

1.7 Jedi Development

Note: This documentation is for Jedi developers who want to improve Jedi itself, but have no idea how Jedi works. If
you want to use Jedi for your IDE, look at the plugin api. It is also important to note that it’s a pretty old version and
some things might not apply anymore.

1.7.1 Introduction

This page tries to address the fundamental demand for documentation of the Jedi internals. Understanding a dynamic
language is a complex task. Especially because type inference in Python can be a very recursive task. Therefore Jedi
couldn’t get rid of complexity. I know that simple is better than complex, but unfortunately it sometimes requires
complex solutions to understand complex systems.

1.7. Jedi Development 29

api.html

Jedi Documentation, Release 0.18.0

In six chapters I’m trying to describe the internals of Jedi:

• The Jedi Core

• Core Extensions

• Imports & Modules

• Stubs & Annotations

• Caching & Recursions

• Helper modules

Note: Testing is not documented here, you’ll find that right here.

1.7.2 The Jedi Core

The core of Jedi consists of three parts:

• Parser

• Python type inference

• API

Most people are probably interested in type inference, because that’s where all the magic happens. I need to introduce
the parser first, because jedi.inference uses it extensively.

Parser

Jedi used to have its internal parser, however this is now a separate project and is called parso.

The parser creates a syntax tree that Jedi analyses and tries to understand. The grammar that this parser uses is very
similar to the official Python grammar files.

Type inference of python code (inference/__init__.py)

Type inference of Python code in Jedi is based on three assumptions:

• The code uses as least side effects as possible. Jedi understands certain list/tuple/set modifications, but there’s
no guarantee that Jedi detects everything (list.append in different modules for example).

• No magic is being used:

– metaclasses

– setattr() / __import__()

– writing to globals(), locals(), object.__dict__

• The programmer is not a total dick, e.g. like this :-)

The actual algorithm is based on a principle I call lazy type inference. That said, the typical entry point for static
analysis is calling infer_expr_stmt. There’s separate logic for autocompletion in the API, the inference_state is
all about inferring an expression.

TODO this paragraph is not what jedi does anymore, it’s similar, but not the same.

Now you need to understand what follows after infer_expr_stmt. Let’s make an example:

30 Chapter 1. Docs

testing.html
http://parso.readthedocs.io
https://docs.python.org/3/reference/grammar.html
https://github.com/davidhalter/jedi/issues/24

Jedi Documentation, Release 0.18.0

import datetime
datetime.date.toda# <-- cursor here

First of all, this module doesn’t care about completion. It really just cares about datetime.date. At the end of the
procedure infer_expr_stmt will return the date class.

To visualize this (simplified):

• InferenceState.infer_expr_stmt doesn’t do much, because there’s no assignment.

• Context.infer_node cares for resolving the dotted path

• InferenceState.find_types searches for global definitions of datetime, which it finds in the definition
of an import, by scanning the syntax tree.

• Using the import logic, the datetime module is found.

• Now find_types is called again by infer_node to find date inside the datetime module.

Now what would happen if we wanted datetime.date.foo.bar? Two more calls to find_types. However
the second call would be ignored, because the first one would return nothing (there’s no foo attribute in date).

What if the import would contain another ExprStmt like this:

from foo import bar
Date = bar.baz

Well. . . You get it. Just another infer_expr_stmt recursion. It’s really easy. Python can obviously get way more
complicated then this. To understand tuple assignments, list comprehensions and everything else, a lot more code had
to be written.

Jedi has been tested very well, so you can just start modifying code. It’s best to write your own test first for your “new”
feature. Don’t be scared of breaking stuff. As long as the tests pass, you’re most likely to be fine.

I need to mention now that lazy type inference is really good because it only inferes what needs to be inferred. All the
statements and modules that are not used are just being ignored.

Inference Values (inference/base_value.py)

Values are the “values” that Python would return. However Values are at the same time also the “values” that a user is
currently sitting in.

A ValueSet is typically used to specify the return of a function or any other static analysis operation. In jedi there are
always multiple returns and not just one.

AbstractContext ValueContext

BaseFunctionExecutionContext FunctionExecutionContext

TreeContextMixin

ClassMixin

ClassValue

FunctionAndClassBase

FunctionValue

TreeValue

FunctionMixin

HelperValueMixin Value

TreeInstance

1.7. Jedi Development 31

Jedi Documentation, Release 0.18.0

Name resolution (inference/finder.py)

Searching for names with given scope and name. This is very central in Jedi and Python. The name resolution is quite
complicated with descripter, __getattribute__, __getattr__, global, etc.

If you want to understand name resolution, please read the first few chapters in http://blog.ionelmc.ro/2015/02/09/
understanding-python-metaclasses/.

Flow checks

Flow checks are not really mature. There’s only a check for isinstance. It would check whether a flow has the
form of if isinstance(a, type_or_tuple). Unfortunately every other thing is being ignored (e.g. a == ‘’
would be easy to check for -> a is a string). There’s big potential in these checks.

API (api/__init__.py and api/classes.py)

The API has been designed to be as easy to use as possible. The API documentation can be found here. The API itself
contains little code that needs to be mentioned here. Generally I’m trying to be conservative with the API. I’d rather
not add new API features if they are not necessary, because it’s much harder to deprecate stuff than to add it later.

1.7.3 Core Extensions

Core Extensions is a summary of the following topics:

• Iterables & Dynamic Arrays

• Dynamic Parameters

• Docstrings

• Refactoring

These topics are very important to understand what Jedi additionally does, but they could be removed from Jedi and
Jedi would still work. But slower and without some features.

Iterables & Dynamic Arrays (inference/value/iterable.py)

To understand Python on a deeper level, Jedi needs to understand some of the dynamic features of Python like lists
that are filled after creation:

Contains all classes and functions to deal with lists, dicts, generators and iterators in general.

Parameter completion (inference/dynamic_params.py)

One of the really important features of Jedi is to have an option to understand code like this:

def foo(bar):
bar. # completion here

foo(1)

There’s no doubt wheter bar is an int or not, but if there’s also a call like foo('str'), what would happen? Well,
we’ll just show both. Because that’s what a human would expect.

It works as follows:

32 Chapter 1. Docs

http://blog.ionelmc.ro/2015/02/09/understanding-python-metaclasses/
http://blog.ionelmc.ro/2015/02/09/understanding-python-metaclasses/
api.html

Jedi Documentation, Release 0.18.0

• Jedi sees a param

• search for function calls named foo

• execute these calls and check the input.

Docstrings (inference/docstrings.py)

Docstrings are another source of information for functions and classes. jedi.inference.dynamic_params
tries to find all executions of functions, while the docstring parsing is much easier. There are three different types of
docstrings that Jedi understands:

• Sphinx

• Epydoc

• Numpydoc

For example, the sphinx annotation :type foo: str clearly states that the type of foo is str.

As an addition to parameter searching, this module also provides return annotations.

Refactoring (api/refactoring.py)

1.7.4 Imports & Modules

• Modules

• Builtin Modules

• Imports

Compiled Modules (inference/compiled.py)

Imports (inference/imports.py)

jedi.inference.imports is here to resolve import statements and return the mod-
ules/classes/functions/whatever, which they stand for. However there’s not any actual importing done. This
module is about finding modules in the filesystem. This can be quite tricky sometimes, because Python imports are
not always that simple.

This module also supports import autocompletion, which means to complete statements like from datetim (cursor
at the end would return datetime).

Stubs & Annotations (inference/gradual)

It is unfortunately not well documented how stubs and annotations work in Jedi. If somebody needs an introduction,
please let me know.

1.7.5 Caching & Recursions

• Caching

• Recursions

1.7. Jedi Development 33

http://sphinx-doc.org/markup/desc.html#info-field-lists
http://epydoc.sourceforge.net/manual-fields.html
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://docs.python.org/3/library/modules.html#modules

Jedi Documentation, Release 0.18.0

Caching (cache.py)

This caching is very important for speed and memory optimizations. There’s nothing really spectacular, just some
decorators. The following cache types are available:

• time_cache can be used to cache something for just a limited time span, which can be useful if there’s user
interaction and the user cannot react faster than a certain time.

This module is one of the reasons why Jedi is not thread-safe. As you can see there are global variables, which are
holding the cache information. Some of these variables are being cleaned after every API usage.

Recursions (recursion.py)

Recursions are the recipe of Jedi to conquer Python code. However, someone must stop recursions going mad. Some
settings are here to make Jedi stop at the right time. You can read more about them here.

Next to the internal jedi.inference.cache this module also makes Jedi not thread-safe, because
execution_recursion_decorator uses class variables to count the function calls.

Settings

Recursion settings are important if you don’t want extremly recursive python code to go absolutely crazy.

The default values are based on experiments while completing the Jedi library itself (inception!). But I don’t think
there’s any other Python library that uses recursion in a similarly extreme way. Completion should also be fast and
therefore the quality might not always be maximal.

jedi.inference.recursion.recursion_limit = 15
Like sys.getrecursionlimit(), just for Jedi.

jedi.inference.recursion.total_function_execution_limit = 200
This is a hard limit of how many non-builtin functions can be executed.

jedi.inference.recursion.per_function_execution_limit = 6
The maximal amount of times a specific function may be executed.

jedi.inference.recursion.per_function_recursion_limit = 2
A function may not be executed more than this number of times recursively.

1.7.6 Helper Modules

Most other modules are not really central to how Jedi works. They all contain relevant code, but you if you understand
the modules above, you pretty much understand Jedi.

1.8 Jedi Testing

The test suite depends on pytest:

pip install pytest

If you want to test only a specific Python version (e.g. Python 3.8), it is as easy as:

python3.8 -m pytest

34 Chapter 1. Docs

https://docs.python.org/3/library/sys.html#sys.getrecursionlimit

Jedi Documentation, Release 0.18.0

Tests are also run automatically on Travis CI.

You want to add a test for Jedi? Great! We love that. Normally you should write your tests as Blackbox Tests. Most
tests would fit right in there.

For specific API testing we’re using simple unit tests, with a focus on a simple and readable testing structure.

1.8.1 Integration Tests (run.py)

1.8.2 Refactoring Tests (refactor.py)

1.9 History & Acknowledgements

1.9.1 Acknowledgements

• Dave Halter for creating and maintaining Jedi & Parso.

• Takafumi Arakaki (@tkf) for creating a solid test environment and a lot of other things.

• Danilo Bargen (@dbrgn) for general housekeeping and being a good friend :).

• Guido van Rossum (@gvanrossum) for creating the parser generator pgen2 (originally used in lib2to3).

• Thanks to all the contributors.

1.9.2 A Little Bit of History

Written by Dave.

The Star Wars Jedi are awesome. My Jedi software tries to imitate a little bit of the precognition the Jedi have. There’s
even an awesome scene of Monty Python Jedis :-).

But actually the name has not much to do with Star Wars. It’s part of my second name Jedidjah.

I actually started Jedi back in 2012, because there were no good solutions available for VIM. Most auto-completion
solutions just did not work well. The only good solution was PyCharm. But I liked my good old VIM very much.
There was also a solution called Rope that did not work at all for me. So I decided to write my own version of a
completion engine.

The first idea was to execute non-dangerous code. But I soon realized, that this would not work. So I started to build
a static analysis tool. The biggest problem that I had at the time was that I did not know a thing about parsers.I did
not did not even know the word static analysis. It turns out they are the foundation of a good static analysis tool. I of
course did not know that and tried to write my own poor version of a parser that I ended up throwing away two years
later.

Because of my lack of knowledge, everything after 2012 and before 2020 was basically refactoring. I rewrote the core
parts of Jedi probably like 5-10 times. The last big rewrite (that I did twice) was the inclusion of gradual typing and
stubs.

I learned during that time that it is crucial to have a good understanding of your problem. Otherwise you just end up
doing it again. I only wrote features in the beginning and in the end. Everything else was bugfixing and refactoring.
However now I am really happy with the result. It works well, bugfixes can be quick and is pretty much feature
complete.

I will leave you with a small annectote that happend in 2012, if I remember correctly. After I explained Guido van
Rossum, how some parts of my auto-completion work, he said:

1.9. History & Acknowledgements 35

https://travis-ci.org/davidhalter/jedi/
https://youtu.be/yHRJLIf7wMU

Jedi Documentation, Release 0.18.0

“Oh, that worries me. . . ”

Now that it is finished, I hope he likes it :-).

1.9.3 Main Authors

• David Halter (@davidhalter) <davidhalter88@gmail.com>

• Takafumi Arakaki (@tkf) <aka.tkf@gmail.com>

1.9.4 Code Contributors

• Danilo Bargen (@dbrgn) <mail@dbrgn.ch>

• Laurens Van Houtven (@lvh) <_@lvh.cc>

• Aldo Stracquadanio (@Astrac) <aldo.strac@gmail.com>

• Jean-Louis Fuchs (@ganwell) <ganwell@fangorn.ch>

• tek (@tek)

• Yasha Borevich (@jjay) <j.borevich@gmail.com>

• Aaron Griffin <aaronmgriffin@gmail.com>

• andviro (@andviro)

• Mike Gilbert (@floppym) <floppym@gentoo.org>

• Aaron Meurer (@asmeurer) <asmeurer@gmail.com>

• Lubos Trilety <ltrilety@redhat.com>

• Akinori Hattori (@hattya) <hattya@gmail.com>

• srusskih (@srusskih)

• Steven Silvester (@blink1073)

• Colin Duquesnoy (@ColinDuquesnoy) <colin.duquesnoy@gmail.com>

• Jorgen Schaefer (@jorgenschaefer) <contact@jorgenschaefer.de>

• Fredrik Bergroth (@fbergroth)

• Mathias Fußenegger (@mfussenegger)

• Syohei Yoshida (@syohex) <syohex@gmail.com>

• ppalucky (@ppalucky)

• immerrr (@immerrr) immerrr@gmail.com

• Albertas Agejevas (@alga)

• Savor d’Isavano (@KenetJervet) <newelevenken@163.com>

• Phillip Berndt (@phillipberndt) <phillip.berndt@gmail.com>

• Ian Lee (@IanLee1521) <IanLee1521@gmail.com>

• Farkhad Khatamov (@hatamov) <comsgn@gmail.com>

• Kevin Kelley (@kelleyk) <kelleyk@kelleyk.net>

• Sid Shanker (@squidarth) <sid.p.shanker@gmail.com>

36 Chapter 1. Docs

mailto:davidhalter88@gmail.com
mailto:aka.tkf@gmail.com
mailto:mail@dbrgn.ch
mailto:_@lvh.cc
mailto:aldo.strac@gmail.com
mailto:ganwell@fangorn.ch
mailto:j.borevich@gmail.com
mailto:aaronmgriffin@gmail.com
mailto:floppym@gentoo.org
mailto:asmeurer@gmail.com
mailto:ltrilety@redhat.com
mailto:hattya@gmail.com
mailto:colin.duquesnoy@gmail.com
mailto:contact@jorgenschaefer.de
mailto:syohex@gmail.com
mailto:immerrr@gmail.com
mailto:newelevenken@163.com
mailto:phillip.berndt@gmail.com
mailto:IanLee1521@gmail.com
mailto:comsgn@gmail.com
mailto:kelleyk@kelleyk.net
mailto:sid.p.shanker@gmail.com

Jedi Documentation, Release 0.18.0

• Reinoud Elhorst (@reinhrst)

• Guido van Rossum (@gvanrossum) <guido@python.org>

• Dmytro Sadovnychyi (@sadovnychyi) <jedi@dmit.ro>

• Cristi Burcă (@scribu)

• bstaint (@bstaint)

• Mathias Rav (@Mortal) <rav@cs.au.dk>

• Daniel Fiterman (@dfit99) <fitermandaniel2@gmail.com>

• Simon Ruggier (@sruggier)

• Élie Gouzien (@ElieGouzien)

• Robin Roth (@robinro)

• Malte Plath (@langsamer)

• Anton Zub (@zabulazza)

• Maksim Novikov (@m-novikov) <mnovikov.work@gmail.com>

• Tobias Rzepka (@TobiasRzepka)

• micbou (@micbou)

• Dima Gerasimov (@karlicoss) <karlicoss@gmail.com>

• Max Woerner Chase (@mwchase) <max.chase@gmail.com>

• Johannes Maria Frank (@jmfrank63) <jmfrank63@gmail.com>

• Shane Steinert-Threlkeld (@shanest) <ssshanest@gmail.com>

• Tim Gates (@timgates42) <tim.gates@iress.com>

• Lior Goldberg (@goldberglior)

• Ryan Clary (@mrclary)

• Max Mäusezahl (@mmaeusezahl) <maxmaeusezahl@googlemail.com>

• Vladislav Serebrennikov (@endilll)

• Andrii Kolomoiets (@muffinmad)

• Leo Ryu (@Leo-Ryu)

And a few more “anonymous” contributors.

Note: (@user) means a github user name.

1.10 Changelog

1.10.1 Unreleased

1.10.2 0.18.0 (2020-12-25)

• Dropped Python 2 and Python 3.5

1.10. Changelog 37

mailto:guido@python.org
mailto:jedi@dmit.ro
mailto:rav@cs.au.dk
mailto:fitermandaniel2@gmail.com
mailto:mnovikov.work@gmail.com
mailto:karlicoss@gmail.com
mailto:max.chase@gmail.com
mailto:jmfrank63@gmail.com
mailto:ssshanest@gmail.com
mailto:tim.gates@iress.com
mailto:maxmaeusezahl@googlemail.com

Jedi Documentation, Release 0.18.0

• Using pathlib.Path() as an output instead of str in most places: - Project.path -
Script.path - Definition.module_path - Refactoring.get_renames - Refactoring.
get_changed_files

• Functions with @property now return property instead of function in Name().type

• Started using annotations

• Better support for the walrus operator

• Project attributes are now read accessible

• Removed all deprecations

This is likely going to be the last minor release before 1.0.

1.10.3 0.17.2 (2020-07-17)

• Added an option to pass environment variables to Environment

• Project(...).path exists now

• Support for Python 3.9

• A few bugfixes

This will be the last release that supports Python 2 and Python 3.5. 0.18.0 will be Python 3.6+.

1.10.4 0.17.1 (2020-06-20)

• Django Model meta class support

• Django Manager support (completion on Managers/QuerySets)

• Added Django Stubs to Jedi, thanks to all contributors of the Django Stubs project

• Added SyntaxError.get_message

• Python 3.9 support

• Bugfixes (mostly towards Generics)

1.10.5 0.17.0 (2020-04-14)

• Added Project support. This allows a user to specify which folders Jedi should work with.

• Added support for Refactoring. The following refactorings have been implemented: Script.rename,
Script.inline, Script.extract_variable and Script.extract_function.

• Added Script.get_syntax_errors to display syntax errors in the current script.

• Added code search capabilities both for individual files and projects. The new functions are Project.
search, Project.complete_search, Script.search and Script.complete_search.

• Added Script.help to make it easier to display a help window to people. Now returns pydoc information
as well for Python keywords/operators. This means that on the class keyword it will now return the docstring of
Python’s builtin function help('class').

• The API documentation is now way more readable and complete. Check it out under https://jedi.readthedocs.io.
A lot of it has been rewritten.

• Removed Python 3.4 support

38 Chapter 1. Docs

https://github.com/typeddjango/django-stubs
https://jedi.readthedocs.io

Jedi Documentation, Release 0.18.0

• Many bugfixes

This is likely going to be the last minor version that supports Python 2 and Python3.5. Bugfixes will be provided in
0.17.1+. The next minor/major version will probably be Jedi 1.0.0.

1.10.6 0.16.0 (2020-01-26)

• Added Script.get_context to get information where you currently are.

• Completions/type inference of Pytest fixtures.

• Tensorflow, Numpy and Pandas completions should now be about 4-10x faster after the first time they are used.

• Dict key completions are working now. e.g. d = {1000: 3}; d[10 will expand to 1000.

• Completion for “proxies” works now. These are classes that have a __getattr__(self, name) method
that does a return getattr(x, name). after loading them initially.

• Goto on a function/attribute in a class now goes to the definition in its super class.

• Big Script API Changes:

– The line and column parameters of jedi.Script are now deprecated

– completions deprecated, use complete instead

– goto_assignments deprecated, use goto instead

– goto_definitions deprecated, use infer instead

– call_signatures deprecated, use get_signatures instead

– usages deprecated, use get_references instead

– jedi.names deprecated, use jedi.Script(...).get_names()

• BaseName.goto_assignments renamed to BaseName.goto

• Add follow_imports to Name.goto. Now its signature matches Script.goto.

• Python 2 support deprecated. For this release it is best effort. Python 2 has reached the end of its life and
now it’s just about a smooth transition. Bugs for Python 2 will not be fixed anymore and a third of the tests are
already skipped.

• Removed settings.no_completion_duplicates. It wasn’t tested and nobody was probably using it
anyway.

• Removed settings.use_filesystem_cache and settings.additional_dynamic_modules,
they have no usage anymore. Pretty much nobody was probably using them.

1.10.7 0.15.2 (2019-12-20)

• Signatures are now detected a lot better

• Add fuzzy completions with Script(...).completions(fuzzy=True)

• Files bigger than one MB (about 20kLOC) get cropped to avoid getting stuck completely.

• Many small Bugfixes

• A big refactoring around contexts/values

1.10. Changelog 39

Jedi Documentation, Release 0.18.0

1.10.8 0.15.1 (2019-08-13)

• Small bugfix and removal of a print statement

1.10.9 0.15.0 (2019-08-11)

• Added file path completions, there’s a new Completion.type now: path. Example: '/ho -> '/home/

• *args/**kwargs resolving. If possible Jedi replaces the parameters with the actual alternatives.

• Better support for enums/dataclasses

• When using Interpreter, properties are now executed, since a lot of people have complained about this. Discus-
sion in #1299, #1347.

New APIs:

• Name.get_signatures() -> List[Signature]. Signatures are similar to CallSignature.
Name.params is therefore deprecated.

• Signature.to_string() to format signatures.

• Signature.params -> List[ParamName], ParamName has the following additional attributes
infer_default(), infer_annotation(), to_string(), and kind.

• Name.execute() -> List[Name], makes it possible to infer return values of functions.

1.10.10 0.14.1 (2019-07-13)

• CallSignature.index should now be working a lot better

• A couple of smaller bugfixes

1.10.11 0.14.0 (2019-06-20)

• Added goto_*(prefer_stubs=True) as well as goto_*(prefer_stubs=True)

• Stubs are used now for type inference

• Typeshed is used for better type inference

• Reworked Name.full_name, should have more correct return values

1.10.12 0.13.3 (2019-02-24)

• Fixed an issue with embedded Python, see https://github.com/davidhalter/jedi-vim/issues/870

1.10.13 0.13.2 (2018-12-15)

• Fixed a bug that led to Jedi spawning a lot of subprocesses.

1.10.14 0.13.1 (2018-10-02)

• Bugfixes, because tensorflow completions were still slow.

40 Chapter 1. Docs

https://github.com/davidhalter/jedi-vim/issues/870

Jedi Documentation, Release 0.18.0

1.10.15 0.13.0 (2018-10-02)

• A small release. Some bug fixes.

• Remove Python 3.3 support. Python 3.3 support has been dropped by the Python foundation.

• Default environments are now using the same Python version as the Python process. In 0.12.x, we used to load
the latest Python version on the system.

• Added include_builtins as a parameter to usages.

• goto_assignments has a new follow_builtin_imports parameter that changes the previous behav-
ior slightly.

1.10.16 0.12.1 (2018-06-30)

• This release forces you to upgrade parso. If you don’t, nothing will work anymore. Otherwise changes should be
limited to bug fixes. Unfortunately Jedi still uses a few internals of parso that make it hard to keep compatibility
over multiple releases. Parso >=0.3.0 is going to be needed.

1.10.17 0.12.0 (2018-04-15)

• Virtualenv/Environment support

• F-String Completion/Goto Support

• Cannot crash with segfaults anymore

• Cleaned up import logic

• Understand async/await and autocomplete it (including async generators)

• Better namespace completions

• Passing tests for Windows (including CI for Windows)

• Remove Python 2.6 support

1.10.18 0.11.1 (2017-12-14)

• Parso update - the caching layer was broken

• Better usages - a lot of internal code was ripped out and improved.

1.10.19 0.11.0 (2017-09-20)

• Split Jedi’s parser into a separate project called parso.

• Avoiding side effects in REPL completion.

• Numpy docstring support should be much better.

• Moved the settings.*recursion* away, they are no longer usable.

1.10.20 0.10.2 (2017-04-05)

• Python Packaging sucks. Some files were not included in 0.10.1.

1.10. Changelog 41

Jedi Documentation, Release 0.18.0

1.10.21 0.10.1 (2017-04-05)

• Fixed a few very annoying bugs.

• Prepared the parser to be factored out of Jedi.

1.10.22 0.10.0 (2017-02-03)

• Actual semantic completions for the complete Python syntax.

• Basic type inference for yield from PEP 380.

• PEP 484 support (most of the important features of it). Thanks Claude! (@reinhrst)

• Added get_line_code to Name and Completion objects.

• Completely rewritten the type inference engine.

• A new and better parser for (fast) parsing diffs of Python code.

1.10.23 0.9.0 (2015-04-10)

• The import logic has been rewritten to look more like Python’s. There is now an InferState.modules
import cache, which resembles sys.modules.

• Integrated the parser of 2to3. This will make refactoring possible. It will also be possible to check for error
messages (like compiling an AST would give) in the future.

• With the new parser, the type inference also completely changed. It’s now simpler and more readable.

• Completely rewritten REPL completion.

• Added jedi.names, a command to do static analysis. Thanks to that sourcegraph guys for sponsoring this!

• Alpha version of the linter.

1.10.24 0.8.1 (2014-07-23)

• Bugfix release, the last release forgot to include files that improve autocompletion for builtin libraries. Fixed.

1.10.25 0.8.0 (2014-05-05)

• Memory Consumption for compiled modules (e.g. builtins, sys) has been reduced drastically. Loading times
are down as well (it takes basically as long as an import).

• REPL completion is starting to become usable.

• Various small API changes. Generally this release focuses on stability and refactoring of internal APIs.

• Introducing operator precedence, which makes calculating correct Array indices and __getattr__ strings
possible.

42 Chapter 1. Docs

Jedi Documentation, Release 0.18.0

1.10.26 0.7.0 (2013-08-09)

• Switched from LGPL to MIT license.

• Added an Interpreter class to the API to make autocompletion in REPL possible.

• Added autocompletion support for namespace packages.

• Add sith.py, a new random testing method.

1.10.27 0.6.0 (2013-05-14)

• Much faster parser with builtin part caching.

• A test suite, thanks @tkf.

1.10.28 0.5 versions (2012)

• Initial development.

1.10. Changelog 43

Jedi Documentation, Release 0.18.0

44 Chapter 1. Docs

CHAPTER 2

Resources

If you want to stay up-to-date with releases, please subscribe to this mailing list: https:
//groups.google.com/g/jedi-announce. To subscribe you can simply send an empty email to
jedi-announce+subscribe@googlegroups.com.

• Source Code on Github

• Travis Testing

• Python Package Index

45

https://groups.google.com/g/jedi-announce
https://groups.google.com/g/jedi-announce
https://github.com/davidhalter/jedi
https://travis-ci.org/davidhalter/jedi
https://pypi.python.org/pypi/jedi/

Jedi Documentation, Release 0.18.0

46 Chapter 2. Resources

Python Module Index

j
jedi, 1
jedi.api.environment, 17
jedi.api.project, 16
jedi.api.refactoring, 33
jedi.api.replstartup, 5
jedi.cache, 34
jedi.inference, 30
jedi.inference.base_value, 31
jedi.inference.compiled, 33
jedi.inference.docstrings, 33
jedi.inference.dynamic_params, 32
jedi.inference.finder, 32
jedi.inference.gradual, 33
jedi.inference.imports, 33
jedi.inference.recursion, 34
jedi.inference.value.iterable, 32
jedi.settings, 28

47

Jedi Documentation, Release 0.18.0

48 Python Module Index

Index

A
add_bracket_after_function (in module

jedi.settings), 28
apply() (jedi.api.refactoring.Refactoring method), 26
auto_import_modules (in module jedi.settings), 29

B
BaseName (class in jedi.api.classes), 20
BaseSignature (class in jedi.api.classes), 25
bracket_start (jedi.api.classes.Signature attribute),

26

C
cache_directory (in module jedi.settings), 29
call_signatures_validity (in module

jedi.settings), 29
case_insensitive_completion (in module

jedi.settings), 28
column (jedi.api.classes.BaseName attribute), 21
column (jedi.api.errors.SyntaxError attribute), 27
complete (jedi.api.classes.Completion attribute), 25
complete() (jedi.Script method), 12
complete_search() (jedi.Project method), 17
complete_search() (jedi.Script method), 12
Completion (class in jedi.api.classes), 24
create_environment() (in module jedi), 18

D
defined_names() (jedi.api.classes.Name method),

24
description (jedi.api.classes.BaseName attribute),

22
docstring() (jedi.api.classes.BaseName method), 22
docstring() (jedi.api.classes.Completion method),

25
dynamic_array_additions (in module

jedi.settings), 29
dynamic_params (in module jedi.settings), 29

dynamic_params_for_other_modules (in mod-
ule jedi.settings), 29

E
Environment (class in jedi.api.environment), 18
execute() (jedi.api.classes.BaseName method), 24
extract_function() (jedi.Script method), 14
extract_variable() (jedi.Script method), 14

F
fast_parser (in module jedi.settings), 29
find_system_environments() (in module jedi),

17
find_virtualenvs() (in module jedi), 17
full_name (jedi.api.classes.BaseName attribute), 23

G
get_completion_prefix_length()

(jedi.api.classes.Completion method), 25
get_context() (jedi.Script method), 13
get_default_environment() (in module jedi), 18
get_default_project() (in module jedi), 16
get_definition_end_position()

(jedi.api.classes.BaseName method), 22
get_definition_start_position()

(jedi.api.classes.BaseName method), 22
get_line_code() (jedi.api.classes.BaseName

method), 24
get_names() (jedi.Script method), 13
get_references() (jedi.Script method), 13
get_renames() (jedi.api.refactoring.Refactoring

method), 26
get_signatures() (jedi.api.classes.BaseName

method), 24
get_signatures() (jedi.Script method), 13
get_syntax_errors() (jedi.Script method), 14
get_sys_path() (jedi.api.environment.Environment

method), 18
get_system_environment() (in module jedi), 18

49

Jedi Documentation, Release 0.18.0

get_type_hint() (jedi.api.classes.BaseName
method), 24

goto() (jedi.api.classes.BaseName method), 23
goto() (jedi.Script method), 12

H
help() (jedi.Script method), 13

I
in_builtin_module() (jedi.api.classes.BaseName

method), 21
index (jedi.api.classes.Signature attribute), 26
infer() (jedi.api.classes.BaseName method), 23
infer() (jedi.Script method), 12
infer_annotation() (jedi.api.classes.ParamName

method), 26
infer_default() (jedi.api.classes.ParamName

method), 26
inline() (jedi.Script method), 15
InternalError, 18
Interpreter (class in jedi), 15
InvalidPythonEnvironment, 18
is_definition() (jedi.api.classes.Name method),

24
is_side_effect() (jedi.api.classes.BaseName

method), 23
is_stub() (jedi.api.classes.BaseName method), 23

J
jedi (module), 1
jedi.api.environment (module), 17
jedi.api.project (module), 16
jedi.api.refactoring (module), 33
jedi.api.replstartup (module), 5
jedi.cache (module), 34
jedi.inference (module), 30
jedi.inference.base_value (module), 31
jedi.inference.compiled (module), 33
jedi.inference.docstrings (module), 33
jedi.inference.dynamic_params (module), 32
jedi.inference.finder (module), 32
jedi.inference.gradual (module), 33
jedi.inference.imports (module), 33
jedi.inference.recursion (module), 34
jedi.inference.value.iterable (module), 32
jedi.settings (module), 28

K
kind (jedi.api.classes.ParamName attribute), 26

L
line (jedi.api.classes.BaseName attribute), 21
line (jedi.api.errors.SyntaxError attribute), 27

load() (jedi.Project class method), 16
load_unsafe_extensions (jedi.Project attribute),

17

M
module_name (jedi.api.classes.BaseName attribute),

21
module_path (jedi.api.classes.BaseName attribute),

20

N
Name (class in jedi.api.classes), 24
name (jedi.api.classes.BaseName attribute), 20
name_with_symbols (jedi.api.classes.Completion

attribute), 25

P
ParamName (class in jedi.api.classes), 26
params (jedi.api.classes.BaseSignature attribute), 25
parent() (jedi.api.classes.BaseName method), 24
path (jedi.Project attribute), 16
per_function_execution_limit (in module

jedi.inference.recursion), 34
per_function_recursion_limit (in module

jedi.inference.recursion), 34
preload_module() (in module jedi), 18
Project (class in jedi), 16

R
recursion_limit (in module

jedi.inference.recursion), 34
Refactoring (class in jedi.api.refactoring), 26
RefactoringError, 19
rename() (jedi.Script method), 14

S
save() (jedi.Project method), 16
Script (class in jedi), 11
search() (jedi.Project method), 17
search() (jedi.Script method), 12
set_debug_function() (in module jedi), 18
setup_readline() (in module jedi.utils), 5
Signature (class in jedi.api.classes), 26
smart_sys_path (jedi.Project attribute), 16
SyntaxError (class in jedi.api.errors), 27
sys_path (jedi.Project attribute), 16

T
to_string() (jedi.api.classes.BaseSignature

method), 25
to_string() (jedi.api.classes.ParamName method),

26
total_function_execution_limit (in module

jedi.inference.recursion), 34

50 Index

Jedi Documentation, Release 0.18.0

type (jedi.api.classes.BaseName attribute), 20
type (jedi.api.classes.Completion attribute), 25

U
until_column (jedi.api.errors.SyntaxError attribute),

27
until_line (jedi.api.errors.SyntaxError attribute), 27

Index 51

	Docs
	Resources
	Python Module Index
	Index

