

Jedi - an awesome autocompletion, static analysis and refactoring library for Python

[image: GitHub stars]
 [https://github.com/davidhalter/jedi][image: The percentage of open issues and pull requests]
 [https://github.com/davidhalter/jedi/issues][image: The resolution time is the median time an issue or pull request stays open.]
 [https://github.com/davidhalter/jedi/issues][image: Linux Tests]
 [https://travis-ci.org/davidhalter/jedi][image: Windows Tests]
 [https://ci.appveyor.com/project/davidhalter/jedi/branch/master][image: Coverage status]
 [https://coveralls.io/r/davidhalter/jedi][image: PyPI Downloads]
 [https://pepy.tech/project/jedi]Github Repository [https://github.com/davidhalter/jedi]

Jedi is a static analysis tool for Python that is typically used in
IDEs/editors plugins. Jedi has a focus on autocompletion and goto
functionality. Other features include refactoring, code search and finding
references.

Jedi has a simple API to work with. There is a reference implementation as a
VIM-Plugin [https://github.com/davidhalter/jedi-vim]. Autocompletion in your
REPL is also possible, IPython uses it natively and for the CPython REPL you
can install it. Jedi is well tested and bugs should be rare.

Here’s a simple example of the autocompletion feature:

>>> import jedi
>>> source = '''
... import json
... json.lo'''
>>> script = jedi.Script(source, path='example.py')
>>> script
<Script: 'example.py' ...>
>>> completions = script.complete(3, len('json.lo'))
>>> completions
[<Completion: load>, <Completion: loads>]
>>> print(completions[0].complete)
ad
>>> print(completions[0].name)
load

Autocompletion can for example look like this in jedi-vim:

[image: _images/screenshot_complete.png]

Docs

	Using Jedi

	Features and Limitations

	API Overview

	API Return Classes

	Installation and Configuration

	Settings

	Jedi Development

	Jedi Testing

	History & Acknowledgements

	Changelog

Resources

	Source Code on Github [https://github.com/davidhalter/jedi]

	Travis Testing [https://travis-ci.org/davidhalter/jedi]

	Python Package Index [https://pypi.python.org/pypi/jedi/]

Using Jedi

Jedi is can be used with a variety of plugins and software. It is also possible
to use Jedi in the Python shell or with IPython.

Below you can also find a list of recipes for type hinting.

Editor Plugins

Vim

	jedi-vim [https://github.com/davidhalter/jedi-vim]

	YouCompleteMe [https://valloric.github.io/YouCompleteMe/]

	deoplete-jedi [https://github.com/zchee/deoplete-jedi]

Visual Studio Code

	Python Extension [https://marketplace.visualstudio.com/items?itemName=ms-python.python]

Emacs

	Jedi.el [https://github.com/tkf/emacs-jedi]

	elpy [https://github.com/jorgenschaefer/elpy]

	anaconda-mode [https://github.com/proofit404/anaconda-mode]

Sublime Text 2/3

	SublimeJEDI [https://github.com/srusskih/SublimeJEDI] (ST2 & ST3)

	anaconda [https://github.com/DamnWidget/anaconda] (only ST3)

SynWrite

	SynJedi [http://uvviewsoft.com/synjedi/]

TextMate

	Textmate [https://github.com/lawrenceakka/python-jedi.tmbundle] (Not sure if it’s actually working)

Kate

	Kate [https://kate-editor.org/] version 4.13+ supports it natively [https://projects.kde.org/projects/kde/applications/kate/repository/entry/addons/kate/pate/src/plugins/python_autocomplete_jedi.py?rev=KDE%2F4.13],
you have to enable it, though.

Atom

	autocomplete-python-jedi [https://atom.io/packages/autocomplete-python-jedi]

GNOME Builder

	GNOME Builder [https://wiki.gnome.org/Apps/Builder/] supports it natively [https://git.gnome.org/browse/gnome-builder/tree/plugins/jedi],
and is enabled by default.

Gedit

	gedi [https://github.com/isamert/gedi]

Eric IDE

	Eric IDE [https://eric-ide.python-projects.org] (Available as a plugin)

Web Debugger

	wdb [https://github.com/Kozea/wdb]

and many more!

Tab Completion in the Python Shell

Jedi is a dependency of IPython. Autocompletion in IPython is therefore
possible without additional configuration.

Here is an example video [https://vimeo.com/122332037] how REPL completion
can look like in a different shell.

There are two different options how you can use Jedi autocompletion in
your python interpreter. One with your custom $HOME/.pythonrc.py file
and one that uses PYTHONSTARTUP.

Using PYTHONSTARTUP

To use Jedi completion in Python interpreter, add the following in your shell
setup (e.g., .bashrc). This works only on Linux/Mac, because readline is
not available on Windows. If you still want Jedi autocompletion in your REPL,
just use IPython instead:

export PYTHONSTARTUP="$(python -m jedi repl)"

Then you will be able to use Jedi completer in your Python interpreter:

$ python
Python 2.7.2+ (default, Jul 20 2012, 22:15:08)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.path.join('a', 'b').split().in<TAB> # doctest: +SKIP
..dex ..sert

Using a Custom $HOME/.pythonrc.py

	
jedi.utils.setup_readline(namespace_module=<module '__main__' from '/home/docs/checkouts/readthedocs.org/user_builds/jedi/envs/v0.17.2/bin/sphinx-build'>, fuzzy=False)

	This function sets up readline [https://docs.python.org/3/library/readline.html#module-readline] to use Jedi in a Python interactive
shell.

If you want to use a custom PYTHONSTARTUP file (typically
$HOME/.pythonrc.py), you can add this piece of code:

try:
 from jedi.utils import setup_readline
except ImportError:
 # Fallback to the stdlib readline completer if it is installed.
 # Taken from http://docs.python.org/2/library/rlcompleter.html
 print("Jedi is not installed, falling back to readline")
 try:
 import readline
 import rlcompleter
 readline.parse_and_bind("tab: complete")
 except ImportError:
 print("Readline is not installed either. No tab completion is enabled.")
else:
 setup_readline()

This will fallback to the readline completer if Jedi is not installed.
The readline completer will only complete names in the global namespace,
so for example:

ran<TAB>

will complete to range.

With Jedi the following code:

range(10).cou<TAB>

will complete to range(10).count, this does not work with the default
cPython readline [https://docs.python.org/3/library/readline.html#module-readline] completer.

You will also need to add export PYTHONSTARTUP=$HOME/.pythonrc.py to
your shell profile (usually .bash_profile or .profile if you use
bash).

Recipes

Here are some tips on how to use Jedi efficiently.

Type Hinting

If Jedi cannot detect the type of a function argument correctly (due to the
dynamic nature of Python), you can help it by hinting the type using
one of the docstring/annotation styles below. Only gradual typing will
always work, all the docstring solutions are glorified hacks and more
complicated cases will probably not work.

Official Gradual Typing (Recommended)

You can read a lot about Python’s gradual typing system in the corresponding
PEPs like:

	PEP 484 [https://www.python.org/dev/peps/pep-0484/] as an introduction

	PEP 526 [https://www.python.org/dev/peps/pep-0526/] for variable annotations

	PEP 589 [https://www.python.org/dev/peps/pep-0589/] for TypeDict

	There are probably more :)

Below you can find a few examples how you can use this feature.

Function annotations:

def myfunction(node: ProgramNode, foo: str) -> None:
 """Do something with a ``node``.

 """
 node.| # complete here

Assignment, for-loop and with-statement type hints:

import typing
x: int = foo()
y: typing.Optional[int] = 3

key: str
value: Employee
for key, value in foo.items():
 pass

f: Union[int, float]
with foo() as f:
 print(f + 3)

PEP-0484 should be supported in its entirety. Feel free to open issues if that
is not the case. You can also use stub files.

Sphinx style

http://www.sphinx-doc.org/en/stable/domains.html#info-field-lists

def myfunction(node, foo):
 """
 Do something with a ``node``.

 :type node: ProgramNode
 :param str foo: foo parameter description
 """
 node.| # complete here

Epydoc

http://epydoc.sourceforge.net/manual-fields.html

def myfunction(node):
 """
 Do something with a ``node``.

 @type node: ProgramNode
 """
 node.| # complete here

Numpydoc

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

In order to support the numpydoc format, you need to install the numpydoc [https://pypi.python.org/pypi/numpydoc] package.

def foo(var1, var2, long_var_name='hi'):
 r"""
 A one-line summary that does not use variable names or the
 function name.

 ...

 Parameters

 var1 : array_like
 Array_like means all those objects -- lists, nested lists,
 etc. -- that can be converted to an array. We can also
 refer to variables like `var1`.
 var2 : int
 The type above can either refer to an actual Python type
 (e.g. ``int``), or describe the type of the variable in more
 detail, e.g. ``(N,) ndarray`` or ``array_like``.
 long_variable_name : {'hi', 'ho'}, optional
 Choices in brackets, default first when optional.

 ...

 """
 var2.| # complete here

Features and Limitations

Jedi’s main API calls and features are:

	Autocompletion: Script.complete(); It’s also possible to get it
working in your REPL (IPython, etc.)

	Goto/Type Inference: Script.goto() and Script.infer()

	Static Analysis: Script.get_names() and Script.get_syntax_errors()

	Refactorings: Script.rename(), Script.inline(),
Script.extract_variable() and Script.extract_function()

	Code Search: Script.search() and Project.search()

Basic Features

	Python 2.7 and 3.5+ support

	Ignores syntax errors and wrong indentation

	Can deal with complex module / function / class structures

	Great virtualenv/venv support

	Works great with Python’s type hinting,

	Understands stub files

	Can infer function arguments for sphinx, epydoc and basic numpydoc docstrings

	Is overall a very solid piece of software that has been refined for a long
time. Bug reports are very welcome and are usually fixed within a few weeks.

Supported Python Features

Jedi supports many of the widely used Python features:

	builtins

	returns, yields, yield from

	tuple assignments / array indexing / dictionary indexing / star unpacking

	with-statement / exception handling

	*args / **kwargs

	decorators / lambdas / closures

	generators / iterators

	descriptors: property / staticmethod / classmethod / custom descriptors

	some magic methods: __call__, __iter__, __next__, __get__,
__getitem__, __init__

	list.append(), set.add(), list.extend(), etc.

	(nested) list comprehensions / ternary expressions

	relative imports

	getattr() / __getattr__ / __getattribute__

	function annotations

	simple/typical sys.path modifications

	isinstance checks for if/while/assert

	namespace packages (includes pkgutil, pkg_resources and PEP420 namespaces)

	Django / Flask / Buildout support

	Understands Pytest fixtures

Limitations

In general Jedi’s limit are quite high, but for very big projects or very
complex code, sometimes Jedi intentionally stops type inference, to avoid
hanging for a long time.

Additionally there are some Python patterns Jedi does not support. This is
intentional and below should be a complete list:

	Arbitrary metaclasses: Some metaclasses like enums and dataclasses are
reimplemented in Jedi to make them work. Most of the time stubs are good
enough to get type inference working, even when metaclasses are involved.

	setattr(), __import__()

	Writing to some dicts: globals(), locals(), object.__dict__

	Manipulations of instances outside the instance variables without using
methods

Performance Issues

Importing numpy can be quite slow sometimes, as well as loading the
builtins the first time. If you want to speed things up, you could preload
libriaries in Jedi, with preload_module(). However, once loaded, this
should not be a problem anymore. The same is true for huge modules like
PySide, wx, tensorflow, pandas, etc.

Jedi does not have a very good cache layer. This is probably the biggest and
only architectural issue [https://github.com/davidhalter/jedi/issues/1059] in
Jedi. Unfortunately it is not easy to change that. Dave Halter is thinking
about rewriting Jedi in Rust, but it has taken Jedi more than 8 years to reach
version 1.0, a rewrite will probably also take years.

Security

For Script

Security is an important topic for Jedi. By default, no code is executed
within Jedi. As long as you write pure Python, everything is inferred
statically. If you enable load_unsafe_extensions=True for your
Project and you use builtin modules (c_builtin) Jedi will execute
those modules. If you don’t trust a code base, please do not enable that
option. It might lead to arbitrary code execution.

For Interpreter

If you want security for Interpreter, do not use it. Jedi does
execute properties and in general is not very careful to avoid code execution.
This is intentional: Most people trust the code bases they have imported,
because at that point a malicious code base would have had code execution
already.

API Overview

Note

This documentation is mostly for Plugin developers, who want to
improve their editors/IDE with Jedi.

The API consists of a few different parts:

	The main starting points for complete/goto: Script and
Interpreter. If you work with Jedi you want to understand these
classes first.

	API Result Classes

	Python Versions/Virtualenv Support with functions like
find_system_environments() and find_virtualenvs()

	A way to work with different Folders / Projects

	Helpful functions: preload_module() and set_debug_function()

The methods that you are most likely going to use to work with Jedi are the
following ones:

	Script.complete

	Completes objects under the cursor.

	Script.goto

	Goes to the name that defined the object under the cursor.

	Script.infer

	Return the definitions of under the cursor.

	Script.help

	Used to display a help window to users.

	Script.get_signatures

	Return the function object of the call under the cursor.

	Script.get_references

	Lists all references of a variable in a project.

	Script.get_context

	Returns the scope context under the cursor.

	Script.get_names

	Returns names defined in the current file.

	Script.get_syntax_errors

	Lists all syntax errors in the current file.

	Script.rename

	Renames all references of the variable under the cursor.

	Script.inline

	Inlines a variable under the cursor.

	Script.extract_variable

	Moves an expression to a new statemenet.

	Script.extract_function

	Moves an expression to a new function.

	Script.search

	Searches a name in the current file.

	Script.complete_search

	Like Script.search(), but completes that string.

	Project.search

	Searches a name in the whole project.

	Project.complete_search

	Like Script.search(), but completes that string.

Script

	
class jedi.Script(code=None, line=None, column=None, path=None, encoding=None, sys_path=None, environment=None, project=None, source=None)

	A Script is the base for completions, goto or whatever you want to do with
Jedi. The counter part of this class is Interpreter, which works
with actual dictionaries and can work with a REPL. This class
should be used when a user edits code in an editor.

You can either use the code parameter or path to read a file.
Usually you’re going to want to use both of them (in an editor).

The Script’s sys.path is very customizable:

	If project is provided with a sys_path, that is going to be used.

	If environment is provided, its sys.path will be used
(see Environment.get_sys_path);

	Otherwise sys.path will match that of the default environment of
Jedi, which typically matches the sys path that was used at the time
when Jedi was imported.

Most methods have a line and a column parameter. Lines in Jedi are
always 1-based and columns are always zero based. To avoid repetition they
are not always documented. You can omit both line and column. Jedi will
then just do whatever action you are calling at the end of the file. If you
provide only the line, just will complete at the end of that line.

Warning

By default jedi.settings.fast_parser is enabled, which means
that parso reuses modules (i.e. they are not immutable). With this setting
Jedi is not thread safe and it is also not safe to use multiple
Script instances and its definitions at the same time.

If you are a normal plugin developer this should not be an issue. It is
an issue for people that do more complex stuff with Jedi.

This is purely a performance optimization and works pretty well for all
typical usages, however consider to turn the setting off if it causes
you problems. See also
this discussion [https://github.com/davidhalter/jedi/issues/1240].

	Parameters

	
	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source code of the current file, separated by newlines.

	line (int [https://docs.python.org/3/library/functions.html#int]) – Deprecated, please use it directly on e.g. .complete

	column (int [https://docs.python.org/3/library/functions.html#int]) – Deprecated, please use it directly on e.g. .complete

	path (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The path of the file in the file system, or '' if
it hasn’t been saved yet.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – Deprecated, cast to unicode yourself. The encoding of
code, if it is not a unicode object (default 'utf-8').

	sys_path (typing.List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Deprecated, use the project parameter.

	environment (Environment) – Provide a predefined Environment
to work with a specific Python version or virtualenv.

	project (Project) – Provide a Project to make sure finding
references works well, because the right folder is searched. There are
also ways to modify the sys path and other things.

	
complete(line=None, column=None, **kwargs)

	Completes objects under the cursor.

Those objects contain information about the completions, more than just
names.

	Parameters

	fuzzy – Default False. Will return fuzzy completions, which means
that e.g. ooa will match foobar.

	Returns

	Completion objects, sorted by name. Normal names appear
before “private” names that start with _ and those appear
before magic methods and name mangled names that start with __.

	Return type

	list of Completion

	
infer(line=None, column=None, **kwargs)

	Return the definitions of under the cursor. It is basically a wrapper
around Jedi’s type inference.

This method follows complicated paths and returns the end, not the
first definition. The big difference between goto() and
infer() is that goto() doesn’t
follow imports and statements. Multiple objects may be returned,
because depending on an option you can have two different versions of a
function.

	Parameters

	
	only_stubs – Only return stubs for this method.

	prefer_stubs – Prefer stubs to Python objects for this method.

	Return type

	list of Name

	
goto(line=None, column=None, **kwargs)

	Goes to the name that defined the object under the cursor. Optionally
you can follow imports.
Multiple objects may be returned, depending on an if you can have two
different versions of a function.

	Parameters

	
	follow_imports – The method will follow imports.

	follow_builtin_imports – If follow_imports is True will try
to look up names in builtins (i.e. compiled or extension modules).

	only_stubs – Only return stubs for this method.

	prefer_stubs – Prefer stubs to Python objects for this method.

	Return type

	list of Name

	
search(string, **kwargs)

	Searches a name in the current file. For a description of how the
search string should look like, please have a look at
Project.search().

	Parameters

	all_scopes (bool [https://docs.python.org/3/library/functions.html#bool]) – Default False; searches not only for
definitions on the top level of a module level, but also in
functions and classes.

	Yields

	Name

	
complete_search(string, **kwargs)

	Like Script.search(), but completes that string. If you want to
have all possible definitions in a file you can also provide an empty
string.

	Parameters

	
	all_scopes (bool [https://docs.python.org/3/library/functions.html#bool]) – Default False; searches not only for
definitions on the top level of a module level, but also in
functions and classes.

	fuzzy – Default False. Will return fuzzy completions, which means
that e.g. ooa will match foobar.

	Yields

	Completion

	
help(line=None, column=None)

	Used to display a help window to users. Uses Script.goto() and
returns additional definitions for keywords and operators.

Typically you will want to display BaseName.docstring() to the
user for all the returned definitions.

The additional definitions are Name(...).type == 'keyword'.
These definitions do not have a lot of value apart from their docstring
attribute, which contains the output of Python’s help() function.

	Return type

	list of Name

	
get_references(line=None, column=None, **kwargs)

	Lists all references of a variable in a project. Since this can be
quite hard to do for Jedi, if it is too complicated, Jedi will stop
searching.

	Parameters

	
	include_builtins – Default True. If False, checks if a reference
is a builtin (e.g. sys) and in that case does not return it.

	scope – Default 'project'. If 'file', include references in
the current module only.

	Return type

	list of Name

	
get_signatures(line=None, column=None)

	Return the function object of the call under the cursor.

E.g. if the cursor is here:

abs(# <-- cursor is here

This would return the abs function. On the other hand:

abs()# <-- cursor is here

This would return an empty list..

	Return type

	list of Signature

	
get_context(line=None, column=None)

	Returns the scope context under the cursor. This basically means the
function, class or module where the cursor is at.

	Return type

	Name

	
get_names(**kwargs)

	Returns names defined in the current file.

	Parameters

	
	all_scopes – If True lists the names of all scopes instead of
only the module namespace.

	definitions – If True lists the names that have been defined by a
class, function or a statement (a = b returns a).

	references – If True lists all the names that are not listed by
definitions=True. E.g. a = b returns b.

	Return type

	list of Name

	
get_syntax_errors()

	Lists all syntax errors in the current file.

	Return type

	list of SyntaxError

	
rename(line=None, column=None, **kwargs)

	Renames all references of the variable under the cursor.

	Parameters

	new_name – The variable under the cursor will be renamed to this
string.

	Raises

	RefactoringError

	Return type

	Refactoring

	
extract_variable(line, column, **kwargs)

	Moves an expression to a new statemenet.

For example if you have the cursor on foo and provide a
new_name called bar:

foo = 3.1
x = int(foo + 1)

the code above will become:

foo = 3.1
bar = foo + 1
x = int(bar)

	Parameters

	
	new_name – The expression under the cursor will be renamed to
this string.

	until_line (int [https://docs.python.org/3/library/functions.html#int]) – The the selection range ends at this line, when
omitted, Jedi will be clever and try to define the range itself.

	until_column (int [https://docs.python.org/3/library/functions.html#int]) – The the selection range ends at this column, when
omitted, Jedi will be clever and try to define the range itself.

	Raises

	RefactoringError

	Return type

	Refactoring

	
extract_function(line, column, **kwargs)

	Moves an expression to a new function.

For example if you have the cursor on foo and provide a
new_name called bar:

global_var = 3

def x():
 foo = 3.1
 x = int(foo + 1 + global_var)

the code above will become:

global_var = 3

def bar(foo):
 return int(foo + 1 + global_var)

def x():
 foo = 3.1
 x = bar(foo)

	Parameters

	
	new_name – The expression under the cursor will be replaced with
a function with this name.

	until_line (int [https://docs.python.org/3/library/functions.html#int]) – The the selection range ends at this line, when
omitted, Jedi will be clever and try to define the range itself.

	until_column (int [https://docs.python.org/3/library/functions.html#int]) – The the selection range ends at this column, when
omitted, Jedi will be clever and try to define the range itself.

	Raises

	RefactoringError

	Return type

	Refactoring

	
inline(line=None, column=None)

	Inlines a variable under the cursor. This is basically the opposite of
extracting a variable. For example with the cursor on bar:

foo = 3.1
bar = foo + 1
x = int(bar)

the code above will become:

foo = 3.1
x = int(foo + 1)

	Raises

	RefactoringError

	Return type

	Refactoring

Interpreter

	
class jedi.Interpreter(code, namespaces, **kwds)

	Jedi’s API for Python REPLs.

Implements all of the methods that are present in Script as well.

In addition to completions that normal REPL completion does like
str.upper, Jedi also supports code completion based on static code
analysis. For example Jedi will complete str().upper.

>>> from os.path import join
>>> namespace = locals()
>>> script = Interpreter('join("").up', [namespace])
>>> print(script.complete()[0].name)
upper

All keyword arguments are same as the arguments for Script.

	Parameters

	
	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – Code to parse.

	namespaces (typing.List [https://docs.python.org/3/library/typing.html#typing.List][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – A list of namespace dictionaries such as the one
returned by globals() [https://docs.python.org/3/library/functions.html#globals] and locals() [https://docs.python.org/3/library/functions.html#locals].

Projects

Projects are a way to handle Python projects within Jedi. For simpler plugins
you might not want to deal with projects, but if you want to give the user more
flexibility to define sys paths and Python interpreters for a project,
Project is the perfect way to allow for that.

Projects can be saved to disk and loaded again, to allow project definitions to
be used across repositories.

	
jedi.get_default_project(path=None)

	If a project is not defined by the user, Jedi tries to define a project by
itself as well as possible. Jedi traverses folders until it finds one of
the following:

	A .jedi/config.json

	One of the following files: setup.py, .git, .hg,
requirements.txt and MANIFEST.in.

	
class jedi.Project(path, **kwargs)

	Projects are a simple way to manage Python folders and define how Jedi does
import resolution. It is mostly used as a parameter to Script.
Additionally there are functions to search a whole project.

	Parameters

	
	path – The base path for this project.

	environment_path – The Python executable path, typically the path
of a virtual environment.

	load_unsafe_extensions – Default False, Loads extensions that are not in the
sys path and in the local directories. With this option enabled,
this is potentially unsafe if you clone a git repository and
analyze it’s code, because those compiled extensions will be
important and therefore have execution privileges.

	sys_path – list of str. You can override the sys path if you
want. By default the sys.path. is generated by the
environment (virtualenvs, etc).

	added_sys_path – list of str. Adds these paths at the end of the
sys path.

	smart_sys_path – If this is enabled (default), adds paths from
local directories. Otherwise you will have to rely on your packages
being properly configured on the sys.path.

	
classmethod load(path)

	Loads a project from a specific path. You should not provide the path
to .jedi/project.json, but rather the path to the project folder.

	Parameters

	path – The path of the directory you want to use as a project.

	
save()

	Saves the project configuration in the project in .jedi/project.json.

	
path

	The base path for this project.

	
search(string, **kwargs)

	Searches a name in the whole project. If the project is very big,
at some point Jedi will stop searching. However it’s also very much
recommended to not exhaust the generator. Just display the first ten
results to the user.

There are currently three different search patterns:

	foo to search for a definition foo in any file or a file called
foo.py or foo.pyi.

	foo.bar to search for the foo and then an attribute bar
in it.

	class foo.bar.Bar or def foo.bar.baz to search for a specific
API type.

	Parameters

	all_scopes (bool [https://docs.python.org/3/library/functions.html#bool]) – Default False; searches not only for
definitions on the top level of a module level, but also in
functions and classes.

	Yields

	Name

	
complete_search(string, **kwargs)

	Like Script.search(), but completes that string. An empty string
lists all definitions in a project, so be careful with that.

	Parameters

	all_scopes (bool [https://docs.python.org/3/library/functions.html#bool]) – Default False; searches not only for
definitions on the top level of a module level, but also in
functions and classes.

	Yields

	Completion

Environments

Environments are a way to activate different Python versions or Virtualenvs for
static analysis. The Python binary in that environment is going to be executed.

	
jedi.find_system_environments(**kwargs)

	Ignores virtualenvs and returns the Python versions that were installed on
your system. This might return nothing, if you’re running Python e.g. from
a portable version.

The environments are sorted from latest to oldest Python version.

	Yields

	Environment

	
jedi.find_virtualenvs(paths=None, **kwargs)

	
	Parameters

	
	paths – A list of paths in your file system to be scanned for
Virtualenvs. It will search in these paths and potentially execute the
Python binaries.

	safe – Default True. In case this is False, it will allow this
function to execute potential python environments. An attacker might
be able to drop an executable in a path this function is searching by
default. If the executable has not been installed by root, it will not
be executed.

	use_environment_vars – Default True. If True, the VIRTUAL_ENV
variable will be checked if it contains a valid VirtualEnv.
CONDA_PREFIX will be checked to see if it contains a valid conda
environment.

	Yields

	Environment

	
jedi.get_system_environment(version, **kwargs)

	Return the first Python environment found for a string of the form ‘X.Y’
where X and Y are the major and minor versions of Python.

	Raises

	InvalidPythonEnvironment

	Returns

	Environment

	
jedi.create_environment(path, safe=True, **kwargs)

	Make it possible to manually create an Environment object by specifying a
Virtualenv path or an executable path and optional environment variables.

	Raises

	InvalidPythonEnvironment

	Returns

	Environment

TODO: make env_vars a kwarg when Python 2 is dropped. For now, preserve API

	
jedi.get_default_environment()

	Tries to return an active Virtualenv or conda environment.
If there is no VIRTUAL_ENV variable or no CONDA_PREFIX variable set
set it will return the latest Python version installed on the system. This
makes it possible to use as many new Python features as possible when using
autocompletion and other functionality.

	Returns

	Environment

	
exception jedi.InvalidPythonEnvironment

	If you see this exception, the Python executable or Virtualenv you have
been trying to use is probably not a correct Python version.

	
class jedi.api.environment.Environment(executable, env_vars=None)

	This class is supposed to be created by internal Jedi architecture. You
should not create it directly. Please use create_environment or the other
functions instead. It is then returned by that function.

	
get_sys_path()

	The sys path for this environment. Does not include potential
modifications from e.g. appending to sys.path [https://docs.python.org/3/library/sys.html#sys.path].

	Returns

	list of str

Helper Functions

	
jedi.preload_module(*modules)

	Preloading modules tells Jedi to load a module now, instead of lazy parsing
of modules. This can be useful for IDEs, to control which modules to load
on startup.

	Parameters

	modules – different module names, list of string.

	
jedi.set_debug_function(func_cb=<function print_to_stdout>, warnings=True, notices=True, speed=True)

	Define a callback debug function to get all the debug messages.

If you don’t specify any arguments, debug messages will be printed to stdout.

	Parameters

	func_cb – The callback function for debug messages.

Errors

	
exception jedi.InternalError

	This error might happen a subprocess is crashing. The reason for this is
usually broken C code in third party libraries. This is not a very common
thing and it is safe to use Jedi again. However using the same calls might
result in the same error again.

	
exception jedi.RefactoringError

	Refactorings can fail for various reasons. So if you work with refactorings
like Script.rename(), Script.inline(),
Script.extract_variable() and Script.extract_function(), make
sure to catch these. The descriptions in the errors are ususally valuable
for end users.

A typical RefactoringError would tell the user that inlining is not
possible if no name is under the cursor.

Examples

Completions

>>> import jedi
>>> code = '''import json; json.l'''
>>> script = jedi.Script(code, path='example.py')
>>> script
<Script: 'example.py' <SameEnvironment: 3.5.2 in /usr>>
>>> completions = script.complete(1, 19)
>>> completions
[<Completion: load>, <Completion: loads>]
>>> completions[1]
<Completion: loads>
>>> completions[1].complete
'oads'
>>> completions[1].name
'loads'

Type Inference / Goto

>>> import jedi
>>> code = '''\
... def my_func():
... print 'called'
...
... alias = my_func
... my_list = [1, None, alias]
... inception = my_list[2]
...
... inception()'''
>>> script = jedi.Script(code)
>>>
>>> script.goto(8, 1)
[<Name full_name='__main__.inception', description='inception = my_list[2]'>]
>>>
>>> script.infer(8, 1)
[<Name full_name='__main__.my_func', description='def my_func'>]

References

>>> import jedi
>>> code = '''\
... x = 3
... if 1 == 2:
... x = 4
... else:
... del x'''
>>> script = jedi.Script(code)
>>> rns = script.get_references(5, 8)
>>> rns
[<Name full_name='__main__.x', description='x = 3'>,
 <Name full_name='__main__.x', description='x = 4'>,
 <Name full_name='__main__.x', description='del x'>]
>>> rns[1].line
3
>>> rns[1].column
4

Deprecations

The deprecation process is as follows:

	A deprecation is announced in the next major/minor release.

	We wait either at least a year and at least two minor releases until we
remove the deprecated functionality.

API Return Classes

Abstract Base Class

	
class jedi.api.classes.BaseName(inference_state, name)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The base class for all definitions, completions and signatures.

	
module_path

	Shows the file path of a module. e.g. /usr/lib/python2.7/os.py

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]

	
name

	Name of variable/function/class/module.

For example, for x = None it returns 'x'.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]

	
type

	The type of the definition.

Here is an example of the value of this attribute. Let’s consider
the following source. As what is in variable is unambiguous
to Jedi, jedi.Script.infer() should return a list of
definition for sys, f, C and x.

>>> from jedi._compatibility import no_unicode_pprint
>>> from jedi import Script
>>> source = '''
... import keyword
...
... class C:
... pass
...
... class D:
... pass
...
... x = D()
...
... def f():
... pass
...
... for variable in [keyword, f, C, x]:
... variable'''

>>> script = Script(source)
>>> defs = script.infer()

Before showing what is in defs, let’s sort it by line
so that it is easy to relate the result to the source code.

>>> defs = sorted(defs, key=lambda d: d.line)
>>> no_unicode_pprint(defs) # doctest: +NORMALIZE_WHITESPACE
[<Name full_name='keyword', description='module keyword'>,
 <Name full_name='__main__.C', description='class C'>,
 <Name full_name='__main__.D', description='instance D'>,
 <Name full_name='__main__.f', description='def f'>]

Finally, here is what you can get from type:

>>> defs = [str(d.type) for d in defs] # It's unicode and in Py2 has u before it.
>>> defs[0]
'module'
>>> defs[1]
'class'
>>> defs[2]
'instance'
>>> defs[3]
'function'

Valid values for type are module, class, instance, function,
param, path, keyword and statement.

	
module_name

	The module name, a bit similar to what __name__ is in a random
Python module.

>>> from jedi import Script
>>> source = 'import json'
>>> script = Script(source, path='example.py')
>>> d = script.infer()[0]
>>> print(d.module_name) # doctest: +ELLIPSIS
json

	
in_builtin_module()

	Returns True, if this is a builtin module.

	
line

	The line where the definition occurs (starting with 1).

	
column

	The column where the definition occurs (starting with 0).

	
get_definition_start_position()

	The (row, column) of the start of the definition range. Rows start with
1, columns start with 0.

	Return type

	Optional[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]

	
get_definition_end_position()

	The (row, column) of the end of the definition range. Rows start with
1, columns start with 0.

	Return type

	Optional[Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]]]

	
docstring(raw=False, fast=True)

	Return a document string for this completion object.

Example:

>>> from jedi import Script
>>> source = '''\
... def f(a, b=1):
... "Document for function f."
... '''
>>> script = Script(source, path='example.py')
>>> doc = script.infer(1, len('def f'))[0].docstring()
>>> print(doc)
f(a, b=1)
<BLANKLINE>
Document for function f.

Notice that useful extra information is added to the actual
docstring, e.g. function signatures are prepended to their docstrings.
If you need the actual docstring, use raw=True instead.

>>> print(script.infer(1, len('def f'))[0].docstring(raw=True))
Document for function f.

	Parameters

	fast – Don’t follow imports that are only one level deep like
import foo, but follow from foo import bar. This makes
sense for speed reasons. Completing import a is slow if you use
the foo.docstring(fast=False) on every object, because it
parses all libraries starting with a.

	
description

	A description of the Name object, which is heavily used
in testing. e.g. for isinstance it returns def isinstance.

Example:

>>> from jedi._compatibility import no_unicode_pprint
>>> from jedi import Script
>>> source = '''
... def f():
... pass
...
... class C:
... pass
...
... variable = f if random.choice([0,1]) else C'''
>>> script = Script(source) # line is maximum by default
>>> defs = script.infer(column=3)
>>> defs = sorted(defs, key=lambda d: d.line)
>>> no_unicode_pprint(defs) # doctest: +NORMALIZE_WHITESPACE
[<Name full_name='__main__.f', description='def f'>,
 <Name full_name='__main__.C', description='class C'>]
>>> str(defs[0].description) # strip literals in python2
'def f'
>>> str(defs[1].description)
'class C'

	
full_name

	Dot-separated path of this object.

It is in the form of <module>[.<submodule>[...]][.<object>].
It is useful when you want to look up Python manual of the
object at hand.

Example:

>>> from jedi import Script
>>> source = '''
... import os
... os.path.join'''
>>> script = Script(source, path='example.py')
>>> print(script.infer(3, len('os.path.join'))[0].full_name)
os.path.join

Notice that it returns 'os.path.join' instead of (for example)
'posixpath.join'. This is not correct, since the modules name would
be <module 'posixpath' ...>`. However most users find the latter
more practical.

	
is_stub()

	Returns True if the current name is defined in a stub file.

	
is_side_effect()

	Checks if a name is defined as self.foo = 3. In case of self, this
function would return False, for foo it would return True.

	
goto(**kwargs)

	Like Script.goto() (also supports the same params), but does it
for the current name. This is typically useful if you are using
something like Script.get_names().

	Parameters

	
	follow_imports – The goto call will follow imports.

	follow_builtin_imports – If follow_imports is True will try to
look up names in builtins (i.e. compiled or extension modules).

	only_stubs – Only return stubs for this goto call.

	prefer_stubs – Prefer stubs to Python objects for this goto call.

	Return type

	list of Name

	
infer(**kwargs)

	Like Script.infer(), it can be useful to understand which type
the current name has.

Return the actual definitions. I strongly recommend not using it for
your completions, because it might slow down Jedi. If you want to
read only a few objects (<=20), it might be useful, especially to get
the original docstrings. The basic problem of this function is that it
follows all results. This means with 1000 completions (e.g. numpy),
it’s just very, very slow.

	Parameters

	
	only_stubs – Only return stubs for this goto call.

	prefer_stubs – Prefer stubs to Python objects for this type
inference call.

	Return type

	list of Name

	
parent()

	Returns the parent scope of this identifier.

	Return type

	Name

	
get_line_code(before=0, after=0)

	Returns the line of code where this object was defined.

	Parameters

	
	before – Add n lines before the current line to the output.

	after – Add n lines after the current line to the output.

	Return str

	Returns the line(s) of code or an empty string if it’s a
builtin.

	
get_signatures()

	Returns all potential signatures for a function or a class. Multiple
signatures are typical if you use Python stubs with @overload.

	Return type

	list of BaseSignature

	
execute()

	Uses type inference to “execute” this identifier and returns the
executed objects.

	Return type

	list of Name

	
get_type_hint()

	Returns type hints like Iterable[int] or Union[int, str].

This method might be quite slow, especially for functions. The problem
is finding executions for those functions to return something like
Callable[[int, str], str].

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Name

	
class jedi.api.classes.Name(inference_state, definition)

	Bases: jedi.api.classes.BaseName

Name objects are returned from many different APIs including
Script.goto() or Script.infer().

	
defined_names()

	List sub-definitions (e.g., methods in class).

	Return type

	list of Name

	
is_definition()

	Returns True, if defined as a name in a statement, function or class.
Returns False, if it’s a reference to such a definition.

Completion

	
class jedi.api.classes.Completion(inference_state, name, stack, like_name_length, is_fuzzy, cached_name=None)

	Bases: jedi.api.classes.BaseName

Completion objects are returned from Script.complete(). They
provide additional information about a completion.

	
complete

	Only works with non-fuzzy completions. Returns None if fuzzy
completions are used.

Return the rest of the word, e.g. completing isinstance:

isinstan# <-- Cursor is here

would return the string ‘ce’. It also adds additional stuff, depending
on your settings.py.

Assuming the following function definition:

def foo(param=0):
 pass

completing foo(par would give a Completion which complete
would be am=.

	
name_with_symbols

	Similar to name, but like name returns also the
symbols, for example assuming the following function definition:

def foo(param=0):
 pass

completing foo(would give a Completion which
name_with_symbols would be “param=”.

	
docstring(raw=False, fast=True)

	Documented under BaseName.docstring().

	
type

	Documented under BaseName.type().

BaseSignature

	
class jedi.api.classes.BaseSignature(inference_state, signature)

	Bases: jedi.api.classes.Name

These signatures are returned by BaseName.get_signatures()
calls.

	
params

	Returns definitions for all parameters that a signature defines.
This includes stuff like *args and **kwargs.

	Return type

	list of ParamName

	
to_string()

	Returns a text representation of the signature. This could for example
look like foo(bar, baz: int, **kwargs).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Signature

	
class jedi.api.classes.Signature(inference_state, signature, call_details)

	Bases: jedi.api.classes.BaseSignature

A full signature object is the return value of
Script.get_signatures().

	
index

	Returns the param index of the current cursor position.
Returns None if the index cannot be found in the curent call.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
bracket_start

	Returns a line/column tuple of the bracket that is responsible for the
last function call. The first line is 1 and the first column 0.

	Return type

	int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]

ParamName

	
class jedi.api.classes.ParamName(inference_state, definition)

	Bases: jedi.api.classes.Name

	
infer_default()

	Returns default values like the 1 of def foo(x=1):.

	Return type

	list of Name

	
infer_annotation(**kwargs)

	
	Parameters

	execute_annotation – Default True; If False, values are not
executed and classes are returned instead of instances.

	Return type

	list of Name

	
to_string()

	Returns a simple representation of a param, like
f: Callable[..., Any].

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
kind

	Returns an enum instance of inspect [https://docs.python.org/3/library/inspect.html#module-inspect]’s Parameter enum.

	Return type

	inspect.Parameter.kind [https://docs.python.org/3/library/inspect.html#inspect.Parameter.kind]

Refactoring

	
class jedi.api.refactoring.Refactoring(inference_state, file_to_node_changes, renames=())

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
get_changed_files()

	Returns a path to ChangedFile map.

	
get_renames()

	Files can be renamed in a refactoring.

Returns Iterable[Tuple[str, str]].

	
apply()

	Applies the whole refactoring to the files, which includes renames.

	
class jedi.api.errors.SyntaxError(parso_error)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Syntax errors are generated by Script.get_syntax_errors().

	
line

	The line where the error starts (starting with 1).

	
column

	The column where the error starts (starting with 0).

	
until_line

	The line where the error ends (starting with 1).

	
until_column

	The column where the error ends (starting with 0).

Installation and Configuration

Warning

Most people will want to install Jedi as a submodule/vendored and
not through pip/system wide. The reason for this is that it makes sense that
the plugin that uses Jedi has always access to it. Otherwise Jedi will not
work properly when virtualenvs are activated. So please read the
documentation of your editor/IDE plugin to install Jedi.

For plugin developers, Jedi works best if it is always available. Vendoring
is a pretty good option for that.

You can either include Jedi as a submodule in your text editor plugin (like
jedi-vim [https://github.com/davidhalter/jedi-vim] does by default), or you can install it systemwide.

Note

This just installs the Jedi library, not the editor plugins. For information about how to make it work with your
editor, refer to the corresponding documentation.

The normal way

Most people use Jedi with a editor plugins. Typically
you install Jedi by installing an editor plugin. No necessary steps are needed.
Just take a look at the instructions for the plugin.

With pip

On any system you can install Jedi directly from the Python package index
using pip:

sudo pip install jedi

If you want to install the current development version (master branch):

sudo pip install -e git://github.com/davidhalter/jedi.git#egg=jedi

System-wide installation via a package manager

Arch Linux

You can install Jedi directly from official Arch Linux packages:

	python-jedi [https://www.archlinux.org/packages/community/any/python-jedi/]
(Python 3)

	python2-jedi [https://www.archlinux.org/packages/community/any/python2-jedi/]
(Python 2)

The specified Python version just refers to the runtime environment for
Jedi. Use the Python 2 version if you’re running vim (or whatever editor you
use) under Python 2. Otherwise, use the Python 3 version. But whatever version
you choose, both are able to complete both Python 2 and 3 code.

(There is also a packaged version of the vim plugin available:
vim-jedi at Arch Linux [https://www.archlinux.org/packages/community/any/vim-jedi/].)

Debian

Debian packages are available in the unstable repository [https://packages.debian.org/search?keywords=python%20jedi].

Others

We are in the discussion of adding Jedi to the Fedora repositories.

Manual installation from GitHub

If you prefer not to use an automated package installer, you can clone the source from GitHub and install it manually. To install it, run these commands:

git clone --recurse-submodules https://github.com/davidhalter/jedi
cd jedi
sudo python setup.py install

Inclusion as a submodule

If you use an editor plugin like jedi-vim [https://github.com/davidhalter/jedi-vim], you can simply include Jedi as a
git submodule of the plugin directory. Vim plugin managers like Vundle [https://github.com/gmarik/vundle] or
Pathogen [https://github.com/tpope/vim-pathogen] make it very easy to keep submodules up to date.

Settings

This module contains variables with global Jedi settings. To change the
behavior of Jedi, change the variables defined in jedi.settings.

Plugins should expose an interface so that the user can adjust the
configuration.

Example usage:

from jedi import settings
settings.case_insensitive_completion = True

Completion output

	
jedi.settings.case_insensitive_completion = True

	Completions are by default case insensitive.

	
jedi.settings.add_bracket_after_function = False

	Adds an opening bracket after a function for completions.

Filesystem cache

	
jedi.settings.cache_directory = '/home/docs/.cache/jedi'

	The path where the cache is stored.

On Linux, this defaults to ~/.cache/jedi/, on OS X to
~/Library/Caches/Jedi/ and on Windows to %LOCALAPPDATA%\Jedi\Jedi\.
On Linux, if the environment variable $XDG_CACHE_HOME is set,
$XDG_CACHE_HOME/jedi is used instead of the default one.

Parser

	
jedi.settings.fast_parser = True

	Uses Parso’s diff parser. If it is enabled, this might cause issues, please
read the warning on Script. This feature makes it possible to only
parse the parts again that have changed, while reusing the rest of the syntax
tree.

Dynamic stuff

	
jedi.settings.dynamic_array_additions = True

	check for append, etc. on arrays: [], {}, () as well as list/set calls.

	
jedi.settings.dynamic_params = True

	A dynamic param completion, finds the callees of the function, which define
the params of a function.

	
jedi.settings.dynamic_params_for_other_modules = True

	Do the same for other modules.

	
jedi.settings.auto_import_modules = ['gi']

	Modules that will not be analyzed but imported, if they contain Python code.
This improves autocompletion for libraries that use setattr or
globals() modifications a lot.

Caching

	
jedi.settings.call_signatures_validity = 3.0

	Finding function calls might be slow (0.1-0.5s). This is not acceptible for
normal writing. Therefore cache it for a short time.

Jedi Development

Note

This documentation is for Jedi developers who want to improve Jedi
itself, but have no idea how Jedi works. If you want to use Jedi for
your IDE, look at the plugin api.
It is also important to note that it’s a pretty old version and some things
might not apply anymore.

Introduction

This page tries to address the fundamental demand for documentation of the
Jedi internals. Understanding a dynamic language is a complex task. Especially
because type inference in Python can be a very recursive task. Therefore Jedi
couldn’t get rid of complexity. I know that simple is better than complex,
but unfortunately it sometimes requires complex solutions to understand complex
systems.

In six chapters I’m trying to describe the internals of Jedi:

	The Jedi Core

	Core Extensions

	Imports & Modules

	Stubs & Annotations

	Caching & Recursions

	Helper modules

Note

Testing is not documented here, you’ll find that
right here.

The Jedi Core

The core of Jedi consists of three parts:

	Parser

	Python type inference

	API

Most people are probably interested in type inference,
because that’s where all the magic happens. I need to introduce the parser first, because jedi.inference uses it extensively.

Parser

Jedi used to have its internal parser, however this is now a separate project
and is called parso [http://parso.readthedocs.io].

The parser creates a syntax tree that Jedi analyses and tries to understand.
The grammar that this parser uses is very similar to the official Python
grammar files [https://docs.python.org/3/reference/grammar.html].

Type inference of python code (inference/__init__.py)

Type inference of Python code in Jedi is based on three assumptions:

	The code uses as least side effects as possible. Jedi understands certain
list/tuple/set modifications, but there’s no guarantee that Jedi detects
everything (list.append in different modules for example).

	No magic is being used:

	metaclasses

	setattr() / __import__()

	writing to globals(), locals(), object.__dict__

	The programmer is not a total dick, e.g. like this [https://github.com/davidhalter/jedi/issues/24] :-)

The actual algorithm is based on a principle I call lazy type inference. That
said, the typical entry point for static analysis is calling
infer_expr_stmt. There’s separate logic for autocompletion in the API, the
inference_state is all about inferring an expression.

TODO this paragraph is not what jedi does anymore, it’s similar, but not the
same.

Now you need to understand what follows after infer_expr_stmt. Let’s
make an example:

import datetime
datetime.date.toda# <-- cursor here

First of all, this module doesn’t care about completion. It really just cares
about datetime.date. At the end of the procedure infer_expr_stmt will
return the date class.

To visualize this (simplified):

	InferenceState.infer_expr_stmt doesn’t do much, because there’s no assignment.

	Context.infer_node cares for resolving the dotted path

	InferenceState.find_types searches for global definitions of datetime, which
it finds in the definition of an import, by scanning the syntax tree.

	Using the import logic, the datetime module is found.

	Now find_types is called again by infer_node to find date
inside the datetime module.

Now what would happen if we wanted datetime.date.foo.bar? Two more
calls to find_types. However the second call would be ignored, because the
first one would return nothing (there’s no foo attribute in date).

What if the import would contain another ExprStmt like this:

from foo import bar
Date = bar.baz

Well… You get it. Just another infer_expr_stmt recursion. It’s really
easy. Python can obviously get way more complicated then this. To understand
tuple assignments, list comprehensions and everything else, a lot more code had
to be written.

Jedi has been tested very well, so you can just start modifying code. It’s best
to write your own test first for your “new” feature. Don’t be scared of
breaking stuff. As long as the tests pass, you’re most likely to be fine.

I need to mention now that lazy type inference is really good because it
only inferes what needs to be inferred. All the statements and modules
that are not used are just being ignored.

Inference Values (inference/base_value.py)

Values are the “values” that Python would return. However Values are at the
same time also the “values” that a user is currently sitting in.

A ValueSet is typically used to specify the return of a function or any other
static analysis operation. In jedi there are always multiple returns and not
just one.

[image: Inheritance diagram of jedi.inference.value.instance.TreeInstance, jedi.inference.value.klass.ClassValue, jedi.inference.value.function.FunctionValue, jedi.inference.value.function.FunctionExecutionContext]

Name resolution (inference/finder.py)

Searching for names with given scope and name. This is very central in Jedi and
Python. The name resolution is quite complicated with descripter,
__getattribute__, __getattr__, global, etc.

If you want to understand name resolution, please read the first few chapters
in http://blog.ionelmc.ro/2015/02/09/understanding-python-metaclasses/.

Flow checks

Flow checks are not really mature. There’s only a check for isinstance. It
would check whether a flow has the form of if isinstance(a, type_or_tuple).
Unfortunately every other thing is being ignored (e.g. a == ‘’ would be easy to
check for -> a is a string). There’s big potential in these checks.

API (api/__init__.py and api/classes.py)

The API has been designed to be as easy to use as possible. The API
documentation can be found here. The API itself contains
little code that needs to be mentioned here. Generally I’m trying to be
conservative with the API. I’d rather not add new API features if they are not
necessary, because it’s much harder to deprecate stuff than to add it later.

Core Extensions

Core Extensions is a summary of the following topics:

	Iterables & Dynamic Arrays

	Dynamic Parameters

	Docstrings

	Refactoring

These topics are very important to understand what Jedi additionally does, but
they could be removed from Jedi and Jedi would still work. But slower and
without some features.

Iterables & Dynamic Arrays (inference/value/iterable.py)

To understand Python on a deeper level, Jedi needs to understand some of the
dynamic features of Python like lists that are filled after creation:

Contains all classes and functions to deal with lists, dicts, generators and
iterators in general.

Parameter completion (inference/dynamic_params.py)

One of the really important features of Jedi is to have an option to
understand code like this:

def foo(bar):
 bar. # completion here
foo(1)

There’s no doubt wheter bar is an int or not, but if there’s also a call
like foo('str'), what would happen? Well, we’ll just show both. Because
that’s what a human would expect.

It works as follows:

	Jedi sees a param

	search for function calls named foo

	execute these calls and check the input.

Docstrings (inference/docstrings.py)

Docstrings are another source of information for functions and classes.
jedi.inference.dynamic_params tries to find all executions of functions,
while the docstring parsing is much easier. There are three different types of
docstrings that Jedi understands:

	Sphinx [http://sphinx-doc.org/markup/desc.html#info-field-lists]

	Epydoc [http://epydoc.sourceforge.net/manual-fields.html]

	Numpydoc [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]

For example, the sphinx annotation :type foo: str clearly states that the
type of foo is str.

As an addition to parameter searching, this module also provides return
annotations.

Refactoring (api/refactoring.py)

Imports & Modules

	Modules [https://docs.python.org/3/library/modules.html#modules]

	Builtin Modules

	Imports

Compiled Modules (inference/compiled.py)

Imports (inference/imports.py)

jedi.inference.imports is here to resolve import statements and return
the modules/classes/functions/whatever, which they stand for. However there’s
not any actual importing done. This module is about finding modules in the
filesystem. This can be quite tricky sometimes, because Python imports are not
always that simple.

This module uses imp for python up to 3.2 and importlib for python 3.3 on; the
correct implementation is delegated to _compatibility.

This module also supports import autocompletion, which means to complete
statements like from datetim (cursor at the end would return datetime).

Stubs & Annotations (inference/gradual)

It is unfortunately not well documented how stubs and annotations work in Jedi.
If somebody needs an introduction, please let me know.

Caching & Recursions

	Caching

	Recursions

Caching (cache.py)

This caching is very important for speed and memory optimizations. There’s
nothing really spectacular, just some decorators. The following cache types are
available:

	time_cache can be used to cache something for just a limited time span,
which can be useful if there’s user interaction and the user cannot react
faster than a certain time.

This module is one of the reasons why Jedi is not thread-safe. As you can see
there are global variables, which are holding the cache information. Some of
these variables are being cleaned after every API usage.

Recursions (recursion.py)

Recursions are the recipe of Jedi to conquer Python code. However, someone
must stop recursions going mad. Some settings are here to make Jedi stop at
the right time. You can read more about them here.

Next to the internal jedi.inference.cache this module also makes Jedi not
thread-safe, because execution_recursion_decorator uses class variables to
count the function calls.

Settings

Recursion settings are important if you don’t want extremly
recursive python code to go absolutely crazy.

The default values are based on experiments while completing the Jedi library
itself (inception!). But I don’t think there’s any other Python library that
uses recursion in a similarly extreme way. Completion should also be fast and
therefore the quality might not always be maximal.

	
jedi.inference.recursion.recursion_limit = 15

	Like sys.getrecursionlimit() [https://docs.python.org/3/library/sys.html#sys.getrecursionlimit], just for Jedi.

	
jedi.inference.recursion.total_function_execution_limit = 200

	This is a hard limit of how many non-builtin functions can be executed.

	
jedi.inference.recursion.per_function_execution_limit = 6

	The maximal amount of times a specific function may be executed.

	
jedi.inference.recursion.per_function_recursion_limit = 2

	A function may not be executed more than this number of times recursively.

Helper Modules

Most other modules are not really central to how Jedi works. They all contain
relevant code, but you if you understand the modules above, you pretty much
understand Jedi.

Jedi Testing

The test suite depends on pytest:

pip install pytest

If you want to test only a specific Python version (e.g. Python 3.8), it is as
easy as:

python3.8 -m pytest

Tests are also run automatically on Travis CI [https://travis-ci.org/davidhalter/jedi/].

You want to add a test for Jedi? Great! We love that. Normally you should
write your tests as Blackbox Tests. Most tests would
fit right in there.

For specific API testing we’re using simple unit tests, with a focus on a
simple and readable testing structure.

Integration Tests (run.py)

Refactoring Tests (refactor.py)

History & Acknowledgements

Acknowledgements

	Dave Halter for creating and maintaining Jedi & Parso.

	Takafumi Arakaki (@tkf) for creating a solid test environment and a lot of
other things.

	Danilo Bargen (@dbrgn) for general housekeeping and being a good friend :).

	Guido van Rossum (@gvanrossum) for creating the parser generator pgen2
(originally used in lib2to3).

	Thanks to all the contributors.

A Little Bit of History

Written by Dave.

The Star Wars Jedi are awesome. My Jedi software tries to imitate a little bit
of the precognition the Jedi have. There’s even an awesome scene [https://youtu.be/yHRJLIf7wMU] of Monty Python Jedis :-).

But actually the name has not much to do with Star Wars. It’s part of my
second name Jedidjah.

I actually started Jedi back in 2012, because there were no good solutions
available for VIM. Most auto-completion solutions just did not work well. The
only good solution was PyCharm. But I liked my good old VIM very much. There
was also a solution called Rope that did not work at all for me. So I decided
to write my own version of a completion engine.

The first idea was to execute non-dangerous code. But I soon realized, that
this would not work. So I started to build a static analysis tool.
The biggest problem that I had at the time was that I did not know a thing
about parsers.I did not did not even know the word static analysis. It turns
out they are the foundation of a good static analysis tool. I of course did not
know that and tried to write my own poor version of a parser that I ended up
throwing away two years later.

Because of my lack of knowledge, everything after 2012 and before 2020 was
basically refactoring. I rewrote the core parts of Jedi probably like 5-10
times. The last big rewrite (that I did twice) was the inclusion of
gradual typing and stubs.

I learned during that time that it is crucial to have a good understanding of
your problem. Otherwise you just end up doing it again. I only wrote features
in the beginning and in the end. Everything else was bugfixing and refactoring.
However now I am really happy with the result. It works well, bugfixes can be
quick and is pretty much feature complete.

I will leave you with a small annectote that happend in 2012, if I remember
correctly. After I explained Guido van Rossum, how some parts of my
auto-completion work, he said:

“Oh, that worries me…”

Now that it is finished, I hope he likes it :-).

﻿Main Authors

	David Halter (@davidhalter) <davidhalter88@gmail.com>

	Takafumi Arakaki (@tkf) <aka.tkf@gmail.com>

Code Contributors

	Danilo Bargen (@dbrgn) <mail@dbrgn.ch>

	Laurens Van Houtven (@lvh) <_@lvh.cc>

	Aldo Stracquadanio (@Astrac) <aldo.strac@gmail.com>

	Jean-Louis Fuchs (@ganwell) <ganwell@fangorn.ch>

	tek (@tek)

	Yasha Borevich (@jjay) <j.borevich@gmail.com>

	Aaron Griffin <aaronmgriffin@gmail.com>

	andviro (@andviro)

	Mike Gilbert (@floppym) <floppym@gentoo.org>

	Aaron Meurer (@asmeurer) <asmeurer@gmail.com>

	Lubos Trilety <ltrilety@redhat.com>

	Akinori Hattori (@hattya) <hattya@gmail.com>

	srusskih (@srusskih)

	Steven Silvester (@blink1073)

	Colin Duquesnoy (@ColinDuquesnoy) <colin.duquesnoy@gmail.com>

	Jorgen Schaefer (@jorgenschaefer) <contact@jorgenschaefer.de>

	Fredrik Bergroth (@fbergroth)

	Mathias Fußenegger (@mfussenegger)

	Syohei Yoshida (@syohex) <syohex@gmail.com>

	ppalucky (@ppalucky)

	immerrr (@immerrr) immerrr@gmail.com

	Albertas Agejevas (@alga)

	Savor d’Isavano (@KenetJervet) <newelevenken@163.com>

	Phillip Berndt (@phillipberndt) <phillip.berndt@gmail.com>

	Ian Lee (@IanLee1521) <IanLee1521@gmail.com>

	Farkhad Khatamov (@hatamov) <comsgn@gmail.com>

	Kevin Kelley (@kelleyk) <kelleyk@kelleyk.net>

	Sid Shanker (@squidarth) <sid.p.shanker@gmail.com>

	Reinoud Elhorst (@reinhrst)

	Guido van Rossum (@gvanrossum) <guido@python.org>

	Dmytro Sadovnychyi (@sadovnychyi) <jedi@dmit.ro>

	Cristi Burcă (@scribu)

	bstaint (@bstaint)

	Mathias Rav (@Mortal) <rav@cs.au.dk>

	Daniel Fiterman (@dfit99) <fitermandaniel2@gmail.com>

	Simon Ruggier (@sruggier)

	Élie Gouzien (@ElieGouzien)

	Robin Roth (@robinro)

	Malte Plath (@langsamer)

	Anton Zub (@zabulazza)

	Maksim Novikov (@m-novikov) <mnovikov.work@gmail.com>

	Tobias Rzepka (@TobiasRzepka)

	micbou (@micbou)

	Dima Gerasimov (@karlicoss) <karlicoss@gmail.com>

	Max Woerner Chase (@mwchase) <max.chase@gmail.com>

	Johannes Maria Frank (@jmfrank63) <jmfrank63@gmail.com>

	Shane Steinert-Threlkeld (@shanest) <ssshanest@gmail.com>

	Tim Gates (@timgates42) <tim.gates@iress.com>

	Lior Goldberg (@goldberglior)

	Ryan Clary (@mrclary)

	Max Mäusezahl (@mmaeusezahl) <maxmaeusezahl@googlemail.com>

	Vladislav Serebrennikov (@endilll)

	Andrii Kolomoiets (@muffinmad)

And a few more “anonymous” contributors.

Note: (@user) means a github user name.

Changelog

Unreleased

0.17.2 (2020-07-17)

	Added an option to pass environment variables to Environment

	Project(...).path exists now

	Support for Python 3.9

	A few bugfixes

This will be the last release that supports Python 2 and Python 3.5.
0.18.0 will be Python 3.6+.

0.17.1 (2020-06-20)

	Django Model meta class support

	Django Manager support (completion on Managers/QuerySets)

	Added Django Stubs to Jedi, thanks to all contributors of the
Django Stubs [https://github.com/typeddjango/django-stubs] project

	Added SyntaxError.get_message

	Python 3.9 support

	Bugfixes (mostly towards Generics)

0.17.0 (2020-04-14)

	Added Project support. This allows a user to specify which folders Jedi
should work with.

	Added support for Refactoring. The following refactorings have been
implemented: Script.rename, Script.inline,
Script.extract_variable and Script.extract_function.

	Added Script.get_syntax_errors to display syntax errors in the current
script.

	Added code search capabilities both for individual files and projects. The
new functions are Project.search, Project.complete_search,
Script.search and Script.complete_search.

	Added Script.help to make it easier to display a help window to people.
Now returns pydoc information as well for Python keywords/operators. This
means that on the class keyword it will now return the docstring of Python’s
builtin function help('class').

	The API documentation is now way more readable and complete. Check it out
under https://jedi.readthedocs.io. A lot of it has been rewritten.

	Removed Python 3.4 support

	Many bugfixes

This is likely going to be the last minor version that supports Python 2 and
Python3.5. Bugfixes will be provided in 0.17.1+. The next minor/major version
will probably be Jedi 1.0.0.

0.16.0 (2020-01-26)

	Added Script.get_context to get information where you currently are.

	Completions/type inference of Pytest fixtures.

	Tensorflow, Numpy and Pandas completions should now be about 4-10x faster
after the first time they are used.

	Dict key completions are working now. e.g. d = {1000: 3}; d[10 will
expand to 1000.

	Completion for “proxies” works now. These are classes that have a
__getattr__(self, name) method that does a return getattr(x, name).
after loading them initially.

	Goto on a function/attribute in a class now goes to the definition in its
super class.

	
	Big Script API Changes:

	
	The line and column parameters of jedi.Script are now deprecated

	completions deprecated, use complete instead

	goto_assignments deprecated, use goto instead

	goto_definitions deprecated, use infer instead

	call_signatures deprecated, use get_signatures instead

	usages deprecated, use get_references instead

	jedi.names deprecated, use jedi.Script(...).get_names()

	BaseName.goto_assignments renamed to BaseName.goto

	Add follow_imports to Name.goto. Now its signature matches
Script.goto.

	Python 2 support deprecated. For this release it is best effort. Python 2
has reached the end of its life and now it’s just about a smooth transition.
Bugs for Python 2 will not be fixed anymore and a third of the tests are
already skipped.

	Removed settings.no_completion_duplicates. It wasn’t tested and nobody
was probably using it anyway.

	Removed settings.use_filesystem_cache and
settings.additional_dynamic_modules, they have no usage anymore. Pretty
much nobody was probably using them.

0.15.2 (2019-12-20)

	Signatures are now detected a lot better

	Add fuzzy completions with Script(...).completions(fuzzy=True)

	Files bigger than one MB (about 20kLOC) get cropped to avoid getting
stuck completely.

	Many small Bugfixes

	A big refactoring around contexts/values

0.15.1 (2019-08-13)

	Small bugfix and removal of a print statement

0.15.0 (2019-08-11)

	Added file path completions, there’s a new Completion.type now:
path. Example: '/ho -> '/home/

	*args/**kwargs resolving. If possible Jedi replaces the parameters
with the actual alternatives.

	Better support for enums/dataclasses

	When using Interpreter, properties are now executed, since a lot of people
have complained about this. Discussion in #1299, #1347.

New APIs:

	Name.get_signatures() -> List[Signature]. Signatures are similar to
CallSignature. Name.params is therefore deprecated.

	Signature.to_string() to format signatures.

	Signature.params -> List[ParamName], ParamName has the
following additional attributes infer_default(), infer_annotation(),
to_string(), and kind.

	Name.execute() -> List[Name], makes it possible to infer
return values of functions.

0.14.1 (2019-07-13)

	CallSignature.index should now be working a lot better

	A couple of smaller bugfixes

0.14.0 (2019-06-20)

	Added goto_*(prefer_stubs=True) as well as goto_*(prefer_stubs=True)

	Stubs are used now for type inference

	Typeshed is used for better type inference

	Reworked Name.full_name, should have more correct return values

0.13.3 (2019-02-24)

	Fixed an issue with embedded Python, see https://github.com/davidhalter/jedi-vim/issues/870

0.13.2 (2018-12-15)

	Fixed a bug that led to Jedi spawning a lot of subprocesses.

0.13.1 (2018-10-02)

	Bugfixes, because tensorflow completions were still slow.

0.13.0 (2018-10-02)

	A small release. Some bug fixes.

	Remove Python 3.3 support. Python 3.3 support has been dropped by the Python
foundation.

	Default environments are now using the same Python version as the Python
process. In 0.12.x, we used to load the latest Python version on the system.

	Added include_builtins as a parameter to usages.

	goto_assignments has a new follow_builtin_imports parameter that
changes the previous behavior slightly.

0.12.1 (2018-06-30)

	This release forces you to upgrade parso. If you don’t, nothing will work
anymore. Otherwise changes should be limited to bug fixes. Unfortunately Jedi
still uses a few internals of parso that make it hard to keep compatibility
over multiple releases. Parso >=0.3.0 is going to be needed.

0.12.0 (2018-04-15)

	Virtualenv/Environment support

	F-String Completion/Goto Support

	Cannot crash with segfaults anymore

	Cleaned up import logic

	Understand async/await and autocomplete it (including async generators)

	Better namespace completions

	Passing tests for Windows (including CI for Windows)

	Remove Python 2.6 support

0.11.1 (2017-12-14)

	Parso update - the caching layer was broken

	Better usages - a lot of internal code was ripped out and improved.

0.11.0 (2017-09-20)

	Split Jedi’s parser into a separate project called parso.

	Avoiding side effects in REPL completion.

	Numpy docstring support should be much better.

	Moved the settings.*recursion* away, they are no longer usable.

0.10.2 (2017-04-05)

	Python Packaging sucks. Some files were not included in 0.10.1.

0.10.1 (2017-04-05)

	Fixed a few very annoying bugs.

	Prepared the parser to be factored out of Jedi.

0.10.0 (2017-02-03)

	Actual semantic completions for the complete Python syntax.

	Basic type inference for yield from PEP 380.

	PEP 484 support (most of the important features of it). Thanks Claude! (@reinhrst)

	Added get_line_code to Name and Completion objects.

	Completely rewritten the type inference engine.

	A new and better parser for (fast) parsing diffs of Python code.

0.9.0 (2015-04-10)

	The import logic has been rewritten to look more like Python’s. There is now
an InferState.modules import cache, which resembles sys.modules.

	Integrated the parser of 2to3. This will make refactoring possible. It will
also be possible to check for error messages (like compiling an AST would give)
in the future.

	With the new parser, the type inference also completely changed. It’s now
simpler and more readable.

	Completely rewritten REPL completion.

	Added jedi.names, a command to do static analysis. Thanks to that
sourcegraph guys for sponsoring this!

	Alpha version of the linter.

0.8.1 (2014-07-23)

	Bugfix release, the last release forgot to include files that improve
autocompletion for builtin libraries. Fixed.

0.8.0 (2014-05-05)

	Memory Consumption for compiled modules (e.g. builtins, sys) has been reduced
drastically. Loading times are down as well (it takes basically as long as an
import).

	REPL completion is starting to become usable.

	Various small API changes. Generally this release focuses on stability and
refactoring of internal APIs.

	Introducing operator precedence, which makes calculating correct Array
indices and __getattr__ strings possible.

0.7.0 (2013-08-09)

	Switched from LGPL to MIT license.

	Added an Interpreter class to the API to make autocompletion in REPL
possible.

	Added autocompletion support for namespace packages.

	Add sith.py, a new random testing method.

0.6.0 (2013-05-14)

	Much faster parser with builtin part caching.

	A test suite, thanks @tkf.

0.5 versions (2012)

	Initial development.

 Python Module Index

 j

 		 	

 		
 j	

 	[image: -]
 	
 jedi	

 	
 	
 jedi.api.environment	

 	
 	
 jedi.api.project	

 	
 	
 jedi.api.refactoring	

 	
 	
 jedi.api.replstartup	

 	
 	
 jedi.cache	

 	
 	
 jedi.inference	

 	
 	
 jedi.inference.base_value	

 	
 	
 jedi.inference.compiled	

 	
 	
 jedi.inference.docstrings	

 	
 	
 jedi.inference.dynamic_params	

 	
 	
 jedi.inference.finder	

 	
 	
 jedi.inference.gradual	

 	
 	
 jedi.inference.imports	

 	
 	
 jedi.inference.recursion	

 	
 	
 jedi.inference.value.iterable	

 	
 	
 jedi.settings	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U

A

 	
 	add_bracket_after_function (in module jedi.settings)

 	
 	apply() (jedi.api.refactoring.Refactoring method)

 	auto_import_modules (in module jedi.settings)

B

 	
 	BaseName (class in jedi.api.classes)

 	
 	BaseSignature (class in jedi.api.classes)

 	bracket_start (jedi.api.classes.Signature attribute)

C

 	
 	cache_directory (in module jedi.settings)

 	call_signatures_validity (in module jedi.settings)

 	case_insensitive_completion (in module jedi.settings)

 	column (jedi.api.classes.BaseName attribute)

 	(jedi.api.errors.SyntaxError attribute)

 	
 	complete (jedi.api.classes.Completion attribute)

 	complete() (jedi.Script method)

 	complete_search() (jedi.Project method)

 	(jedi.Script method)

 	Completion (class in jedi.api.classes)

 	create_environment() (in module jedi)

D

 	
 	defined_names() (jedi.api.classes.Name method)

 	description (jedi.api.classes.BaseName attribute)

 	docstring() (jedi.api.classes.BaseName method)

 	(jedi.api.classes.Completion method)

 	
 	dynamic_array_additions (in module jedi.settings)

 	dynamic_params (in module jedi.settings)

 	dynamic_params_for_other_modules (in module jedi.settings)

E

 	
 	Environment (class in jedi.api.environment)

 	execute() (jedi.api.classes.BaseName method)

 	
 	extract_function() (jedi.Script method)

 	extract_variable() (jedi.Script method)

F

 	
 	fast_parser (in module jedi.settings)

 	find_system_environments() (in module jedi)

 	
 	find_virtualenvs() (in module jedi)

 	full_name (jedi.api.classes.BaseName attribute)

G

 	
 	get_changed_files() (jedi.api.refactoring.Refactoring method)

 	get_context() (jedi.Script method)

 	get_default_environment() (in module jedi)

 	get_default_project() (in module jedi)

 	get_definition_end_position() (jedi.api.classes.BaseName method)

 	get_definition_start_position() (jedi.api.classes.BaseName method)

 	get_line_code() (jedi.api.classes.BaseName method)

 	get_names() (jedi.Script method)

 	get_references() (jedi.Script method)

 	
 	get_renames() (jedi.api.refactoring.Refactoring method)

 	get_signatures() (jedi.api.classes.BaseName method)

 	(jedi.Script method)

 	get_syntax_errors() (jedi.Script method)

 	get_sys_path() (jedi.api.environment.Environment method)

 	get_system_environment() (in module jedi)

 	get_type_hint() (jedi.api.classes.BaseName method)

 	goto() (jedi.api.classes.BaseName method)

 	(jedi.Script method)

H

 	
 	help() (jedi.Script method)

I

 	
 	in_builtin_module() (jedi.api.classes.BaseName method)

 	index (jedi.api.classes.Signature attribute)

 	infer() (jedi.api.classes.BaseName method)

 	(jedi.Script method)

 	infer_annotation() (jedi.api.classes.ParamName method)

 	infer_default() (jedi.api.classes.ParamName method)

 	
 	inline() (jedi.Script method)

 	InternalError

 	Interpreter (class in jedi)

 	InvalidPythonEnvironment

 	is_definition() (jedi.api.classes.Name method)

 	is_side_effect() (jedi.api.classes.BaseName method)

 	is_stub() (jedi.api.classes.BaseName method)

J

 	
 	jedi (module)

 	jedi.api.environment (module)

 	jedi.api.project (module)

 	jedi.api.refactoring (module)

 	jedi.api.replstartup (module)

 	jedi.cache (module)

 	jedi.inference (module)

 	jedi.inference.base_value (module)

 	
 	jedi.inference.compiled (module)

 	jedi.inference.docstrings (module)

 	jedi.inference.dynamic_params (module)

 	jedi.inference.finder (module)

 	jedi.inference.gradual (module)

 	jedi.inference.imports (module)

 	jedi.inference.recursion (module)

 	jedi.inference.value.iterable (module)

 	jedi.settings (module)

K

 	
 	kind (jedi.api.classes.ParamName attribute)

L

 	
 	line (jedi.api.classes.BaseName attribute)

 	(jedi.api.errors.SyntaxError attribute)

 	
 	load() (jedi.Project class method)

M

 	
 	module_name (jedi.api.classes.BaseName attribute)

 	
 	module_path (jedi.api.classes.BaseName attribute)

N

 	
 	Name (class in jedi.api.classes)

 	
 	name (jedi.api.classes.BaseName attribute)

 	name_with_symbols (jedi.api.classes.Completion attribute)

P

 	
 	ParamName (class in jedi.api.classes)

 	params (jedi.api.classes.BaseSignature attribute)

 	parent() (jedi.api.classes.BaseName method)

 	path (jedi.Project attribute)

 	
 	per_function_execution_limit (in module jedi.inference.recursion)

 	per_function_recursion_limit (in module jedi.inference.recursion)

 	preload_module() (in module jedi)

 	Project (class in jedi)

R

 	
 	recursion_limit (in module jedi.inference.recursion)

 	Refactoring (class in jedi.api.refactoring)

 	
 	RefactoringError

 	rename() (jedi.Script method)

S

 	
 	save() (jedi.Project method)

 	Script (class in jedi)

 	search() (jedi.Project method)

 	(jedi.Script method)

 	
 	set_debug_function() (in module jedi)

 	setup_readline() (in module jedi.utils)

 	Signature (class in jedi.api.classes)

 	SyntaxError (class in jedi.api.errors)

T

 	
 	to_string() (jedi.api.classes.BaseSignature method)

 	(jedi.api.classes.ParamName method)

 	
 	total_function_execution_limit (in module jedi.inference.recursion)

 	type (jedi.api.classes.BaseName attribute)

 	(jedi.api.classes.Completion attribute)

U

 	
 	until_column (jedi.api.errors.SyntaxError attribute)

 	
 	until_line (jedi.api.errors.SyntaxError attribute)

 _images/screenshot_complete.png
1 from django.core import management
2b = [management]

3 utility = b[0].ManagementUtility()
4 utility.main_help_text().]]

lower function: _builtin__.str.lower

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_images/inheritance-5e6a9c9958bf1a3f38916ebfe1318af712c8abf9.png
Ny

P 3Compariiy e |

Rocsantiin |

T seneenenconas | Fncrseesioncoeet |

—{ Fanctorvaoe |

_static/down.png

nav.xhtml

 Table of Contents

 		
 Jedi - an awesome autocompletion, static analysis and refactoring library for Python

 		
 Using Jedi

 		
 Editor Plugins

 		
 Vim

 		
 Visual Studio Code

 		
 Emacs

 		
 Sublime Text 2/3

 		
 SynWrite

 		
 TextMate

 		
 Kate

 		
 Atom

 		
 GNOME Builder

 		
 Gedit

 		
 Eric IDE

 		
 Web Debugger

 		
 Tab Completion in the Python Shell

 		
 Using PYTHONSTARTUP

 		
 Using a Custom $HOME/.pythonrc.py

 		
 Recipes

 		
 Type Hinting

 		
 Features and Limitations

 		
 Basic Features

 		
 Supported Python Features

 		
 Limitations

 		
 Performance Issues

 		
 Security

 		
 For Script

 		
 For Interpreter

 		
 API Overview

 		
 Script

 		
 Interpreter

 		
 Projects

 		
 Environments

 		
 Helper Functions

 		
 Errors

 		
 Examples

 		
 Completions

 		
 Type Inference / Goto

 		
 References

 		
 Deprecations

 		
 API Return Classes

 		
 Abstract Base Class

 		
 Name

 		
 Completion

 		
 BaseSignature

 		
 Signature

 		
 ParamName

 		
 Refactoring

 		
 Installation and Configuration

 		
 The normal way

 		
 With pip

 		
 System-wide installation via a package manager

 		
 Arch Linux

 		
 Debian

 		
 Others

 		
 Manual installation from GitHub

 		
 Inclusion as a submodule

 		
 Settings

 		
 Completion output

 		
 Filesystem cache

 		
 Parser

 		
 Dynamic stuff

 		
 Caching

 		
 Jedi Development

 		
 Introduction

 		
 The Jedi Core

 		
 Parser

 		
 Type inference of python code (inference/__init__.py)

 		
 API (api/__init__.py and api/classes.py)

 		
 Core Extensions

 		
 Iterables & Dynamic Arrays (inference/value/iterable.py)

 		
 Parameter completion (inference/dynamic_params.py)

 		
 Docstrings (inference/docstrings.py)

 		
 Refactoring (api/refactoring.py)

 		
 Imports & Modules

 		
 Compiled Modules (inference/compiled.py)

 		
 Imports (inference/imports.py)

 		
 Stubs & Annotations (inference/gradual)

 		
 Caching & Recursions

 		
 Caching (cache.py)

 		
 Recursions (recursion.py)

 		
 Helper Modules

 		
 Jedi Testing

 		
 Integration Tests (run.py)

 		
 Refactoring Tests (refactor.py)

 		
 History & Acknowledgements

 		
 Acknowledgements

 		
 A Little Bit of History

 		
 ﻿Main Authors

 		
 Code Contributors

 		
 Changelog

 		
 Unreleased

 		
 0.17.2 (2020-07-17)

 		
 0.17.1 (2020-06-20)

 		
 0.17.0 (2020-04-14)

 		
 0.16.0 (2020-01-26)

 		
 0.15.2 (2019-12-20)

 		
 0.15.1 (2019-08-13)

 		
 0.15.0 (2019-08-11)

 		
 0.14.1 (2019-07-13)

 		
 0.14.0 (2019-06-20)

 		
 0.13.3 (2019-02-24)

 		
 0.13.2 (2018-12-15)

 		
 0.13.1 (2018-10-02)

 		
 0.13.0 (2018-10-02)

 		
 0.12.1 (2018-06-30)

 		
 0.12.0 (2018-04-15)

 		
 0.11.1 (2017-12-14)

 		
 0.11.0 (2017-09-20)

 		
 0.10.2 (2017-04-05)

 		
 0.10.1 (2017-04-05)

 		
 0.10.0 (2017-02-03)

 		
 0.9.0 (2015-04-10)

 		
 0.8.1 (2014-07-23)

 		
 0.8.0 (2014-05-05)

 		
 0.7.0 (2013-08-09)

 		
 0.6.0 (2013-05-14)

 		
 0.5 versions (2012)

_static/logo.png
JEDI

_static/minus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/plus.png

