

Jedi - an awesome autocompletion/static analysis library for Python

Release v0.16.0. (Installation)

Jedi is a static analysis tool for Python that can be used in IDEs/editors.
Jedi has a focus on autocompletion and goto functionality. Jedi is fast and is
very well tested. It understands Python and stubs on a deep level.

Jedi has support for different goto functions. It’s possible to search for
references and list names in a Python file to get information about them.

Jedi uses a very simple API to connect with IDE’s. There’s a reference
implementation as a VIM-Plugin [https://github.com/davidhalter/jedi-vim],
which uses Jedi’s autocompletion. We encourage you to use Jedi in your IDEs.
Autocompletion in your REPL is also possible, IPython uses it natively and for
the CPython REPL you have to install it.

Here’s a simple example of the autocompletion feature:

>>> import jedi
>>> source = '''
... import json
... json.lo'''
>>> script = jedi.Script(source, path='example.py')
>>> script
<Script: 'example.py' ...>
>>> completions = script.complete(3, len('json.lo'))
>>> completions
[<Completion: load>, <Completion: loads>]
>>> print(completions[0].complete)
ad
>>> print(completions[0].name)
load

As you see Jedi is pretty simple and allows you to concentrate on writing a
good text editor, while still having very good IDE features for Python.

Autocompletion can look like this (e.g. VIM plugin):

[image: _images/screenshot_complete.png]

Docs

	End User Usage
	Editor Plugins

	Tab Completion in the Python Shell

	Installation and Configuration
	The normal way

	With pip

	System-wide installation via a package manager

	Manual installation from GitHub

	Inclusion as a submodule

	Features and Caveats
	General Features

	Supported Python Features

	Not Supported

	Caveats

	Recipes

	A little history

	API Overview
	Deprecations

	API Documentation

	Examples

	API Return Classes

	Settings
	Completion output

	Filesystem cache

	Parser

	Dynamic stuff

	Caching

	Jedi Development
	Introduction

	The Jedi Core

	Core Extensions

	Imports & Modules

	Caching & Recursions

	Helper Modules

	Jedi Testing
	Blackbox Tests (run.py)

	Refactoring Tests (refactor.py)

Resources

	Source Code on Github [https://github.com/davidhalter/jedi]

	Travis Testing [https://travis-ci.org/davidhalter/jedi]

	Python Package Index [https://pypi.python.org/pypi/jedi/]

End User Usage

If you are a not an IDE Developer, the odds are that you just want to use
Jedi as a browser plugin or in the shell. Yes that’s also possible!

Jedi is relatively young and can be used in a variety of Plugins and
Software. If your Editor/IDE is not among them, recommend Jedi to your IDE
developers.

Editor Plugins

Vim:

	jedi-vim [https://github.com/davidhalter/jedi-vim]

	YouCompleteMe [https://valloric.github.io/YouCompleteMe/]

	deoplete-jedi [https://github.com/zchee/deoplete-jedi]

Emacs:

	Jedi.el [https://github.com/tkf/emacs-jedi]

	elpy [https://github.com/jorgenschaefer/elpy]

	anaconda-mode [https://github.com/proofit404/anaconda-mode]

Sublime Text 2/3:

	SublimeJEDI [https://github.com/srusskih/SublimeJEDI] (ST2 & ST3)

	anaconda [https://github.com/DamnWidget/anaconda] (only ST3)

SynWrite:

	SynJedi [http://uvviewsoft.com/synjedi/]

TextMate:

	Textmate [https://github.com/lawrenceakka/python-jedi.tmbundle] (Not sure if it’s actually working)

Kate:

	Kate [https://kate-editor.org/] version 4.13+ supports it natively [https://projects.kde.org/projects/kde/applications/kate/repository/entry/addons/kate/pate/src/plugins/python_autocomplete_jedi.py?rev=KDE%2F4.13],
you have to enable it, though.

Visual Studio Code:

	Python Extension [https://marketplace.visualstudio.com/items?itemName=donjayamanne.python]

Atom:

	autocomplete-python-jedi [https://atom.io/packages/autocomplete-python-jedi]

GNOME Builder:

	GNOME Builder [https://wiki.gnome.org/Apps/Builder/] supports it natively [https://git.gnome.org/browse/gnome-builder/tree/plugins/jedi],
and is enabled by default.

Gedit:

	gedi [https://github.com/isamert/gedi]

Eric IDE:

	Eric IDE [https://eric-ide.python-projects.org] (Available as a plugin)

Web Debugger:

	wdb [https://github.com/Kozea/wdb]

and many more!

Tab Completion in the Python Shell

Starting with Ipython 6.0.0 Jedi is a dependency of IPython. Autocompletion
in IPython is therefore possible without additional configuration.

There are two different options how you can use Jedi autocompletion in
your Python interpreter. One with your custom $HOME/.pythonrc.py file
and one that uses PYTHONSTARTUP.

Using PYTHONSTARTUP

To use Jedi completion in Python interpreter, add the following in your shell
setup (e.g., .bashrc). This works only on Linux/Mac, because readline is
not available on Windows. If you still want Jedi autocompletion in your REPL,
just use IPython instead:

export PYTHONSTARTUP="$(python -m jedi repl)"

Then you will be able to use Jedi completer in your Python interpreter:

$ python
Python 2.7.2+ (default, Jul 20 2012, 22:15:08)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.path.join('a', 'b').split().in<TAB> # doctest: +SKIP
..dex ..sert

Using a custom $HOME/.pythonrc.py

	
jedi.utils.setup_readline(namespace_module=<module '__main__' from '/home/docs/checkouts/readthedocs.org/user_builds/jedi/envs/v0.16.0/bin/sphinx-build'>, fuzzy=False)

	Install Jedi completer to readline [https://docs.python.org/3/library/readline.html#module-readline].

This function setups readline [https://docs.python.org/3/library/readline.html#module-readline] to use Jedi in Python interactive
shell. If you want to use a custom PYTHONSTARTUP file (typically
$HOME/.pythonrc.py), you can add this piece of code:

try:
 from jedi.utils import setup_readline
 setup_readline()
except ImportError:
 # Fallback to the stdlib readline completer if it is installed.
 # Taken from http://docs.python.org/2/library/rlcompleter.html
 print("Jedi is not installed, falling back to readline")
 try:
 import readline
 import rlcompleter
 readline.parse_and_bind("tab: complete")
 except ImportError:
 print("Readline is not installed either. No tab completion is enabled.")

This will fallback to the readline completer if Jedi is not installed.
The readline completer will only complete names in the global namespace,
so for example:

ran<TAB>

will complete to range

with both Jedi and readline, but:

range(10).cou<TAB>

will show complete to range(10).count only with Jedi.

You’ll also need to add export PYTHONSTARTUP=$HOME/.pythonrc.py to
your shell profile (usually .bash_profile or .profile if you use
bash).

Installation and Configuration

You can either include Jedi as a submodule in your text editor plugin (like
jedi-vim [https://github.com/davidhalter/jedi-vim] does by default), or you can install it systemwide.

Note

This just installs the Jedi library, not the editor plugins. For information about how to make it work with your
editor, refer to the corresponding documentation.

The normal way

Most people use Jedi with a editor plugins. Typically
you install Jedi by installing an editor plugin. No necessary steps are needed.
Just take a look at the instructions for the plugin.

With pip

On any system you can install Jedi directly from the Python package index
using pip:

sudo pip install jedi

If you want to install the current development version (master branch):

sudo pip install -e git://github.com/davidhalter/jedi.git#egg=jedi

System-wide installation via a package manager

Arch Linux

You can install Jedi directly from official Arch Linux packages:

	python-jedi [https://www.archlinux.org/packages/community/any/python-jedi/]
(Python 3)

	python2-jedi [https://www.archlinux.org/packages/community/any/python2-jedi/]
(Python 2)

The specified Python version just refers to the runtime environment for
Jedi. Use the Python 2 version if you’re running vim (or whatever editor you
use) under Python 2. Otherwise, use the Python 3 version. But whatever version
you choose, both are able to complete both Python 2 and 3 code.

(There is also a packaged version of the vim plugin available:
vim-jedi at Arch Linux [https://www.archlinux.org/packages/community/any/vim-jedi/].)

Debian

Debian packages are available in the unstable repository [https://packages.debian.org/search?keywords=python%20jedi].

Others

We are in the discussion of adding Jedi to the Fedora repositories.

Manual installation from GitHub

If you prefer not to use an automated package installer, you can clone the source from GitHub and install it manually. To install it, run these commands:

git clone --recurse-submodules https://github.com/davidhalter/jedi
cd jedi
sudo python setup.py install

Inclusion as a submodule

If you use an editor plugin like jedi-vim [https://github.com/davidhalter/jedi-vim], you can simply include Jedi as a
git submodule of the plugin directory. Vim plugin managers like Vundle [https://github.com/gmarik/vundle] or
Pathogen [https://github.com/tpope/vim-pathogen] make it very easy to keep submodules up to date.

Features and Caveats

Jedi obviously supports autocompletion. It’s also possible to get it working in
(your REPL (IPython, etc.)).

Static analysis is also possible by using jedi.Script(...).get_names.

Jedi would in theory support refactoring, but we have never publicized it,
because it’s not production ready. If you’re interested in helping out here,
let me know. With the latest parser changes, it should be very easy to actually
make it work.

General Features

	Python 2.7 and 3.4+ support

	Ignores syntax errors and wrong indentation

	Can deal with complex module / function / class structures

	Great Virtualenv support

	Can infer function arguments from sphinx, epydoc and basic numpydoc docstrings,
and PEP0484-style type hints (type hinting)

	Stub files

Supported Python Features

Jedi supports many of the widely used Python features:

	builtins

	returns, yields, yield from

	tuple assignments / array indexing / dictionary indexing / star unpacking

	with-statement / exception handling

	*args / **kwargs

	decorators / lambdas / closures

	generators / iterators

	some descriptors: property / staticmethod / classmethod

	some magic methods: __call__, __iter__, __next__, __get__,
__getitem__, __init__

	list.append(), set.add(), list.extend(), etc.

	(nested) list comprehensions / ternary expressions

	relative imports

	getattr() / __getattr__ / __getattribute__

	function annotations

	class decorators (py3k feature, are being ignored too, until I find a use
case, that doesn’t work with Jedi)

	simple/usual sys.path modifications

	isinstance checks for if/while/assert

	namespace packages (includes pkgutil, pkg_resources and PEP420 namespaces)

	Django / Flask / Buildout support

	Understands Pytest fixtures

Not Supported

Not yet implemented:

	manipulations of instances outside the instance variables without using
methods

Will probably never be implemented:

	metaclasses (how could an auto-completion ever support this)

	setattr(), __import__()

	writing to some dicts: globals(), locals(), object.__dict__

Caveats

Slow Performance

Importing numpy can be quite slow sometimes, as well as loading the
builtins the first time. If you want to speed things up, you could write import
hooks in Jedi, which preload stuff. However, once loaded, this is not a
problem anymore. The same is true for huge modules like PySide, wx,
etc.

Security

Security is an important issue for Jedi. Therefore no Python code is
executed. As long as you write pure Python, everything is inferred
statically. But: If you use builtin modules (c_builtin) there is no other
option than to execute those modules. However: Execute isn’t that critical (as
e.g. in pythoncomplete, which used to execute every import!), because it
means one import and no more. So basically the only dangerous thing is using
the import itself. If your c_builtin uses some strange initializations, it
might be dangerous. But if it does you’re screwed anyways, because eventually
you’re going to execute your code, which executes the import.

Recipes

Here are some tips on how to use Jedi efficiently.

Type Hinting

If Jedi cannot detect the type of a function argument correctly (due to the
dynamic nature of Python), you can help it by hinting the type using
one of the following docstring/annotation syntax styles:

PEP-0484 style

https://www.python.org/dev/peps/pep-0484/

function annotations

def myfunction(node: ProgramNode, foo: str) -> None:
 """Do something with a ``node``.

 """
 node.| # complete here

assignment, for-loop and with-statement type hints (all Python versions).
Note that the type hints must be on the same line as the statement

x = foo() # type: int
x, y = 2, 3 # type: typing.Optional[int], typing.Union[int, str] # typing module is mostly supported
for key, value in foo.items(): # type: str, Employee # note that Employee must be in scope
 pass
with foo() as f: # type: int
 print(f + 3)

Most of the features in PEP-0484 are supported including the typing module
(for Python < 3.5 you have to do pip install typing to use these),
and forward references.

You can also use stub files.

Sphinx style

http://www.sphinx-doc.org/en/stable/domains.html#info-field-lists

def myfunction(node, foo):
 """Do something with a ``node``.

 :type node: ProgramNode
 :param str foo: foo parameter description

 """
 node.| # complete here

Epydoc

http://epydoc.sourceforge.net/manual-fields.html

def myfunction(node):
 """Do something with a ``node``.

 @type node: ProgramNode

 """
 node.| # complete here

Numpydoc

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

In order to support the numpydoc format, you need to install the numpydoc [https://pypi.python.org/pypi/numpydoc] package.

def foo(var1, var2, long_var_name='hi'):
 r"""A one-line summary that does not use variable names or the
 function name.

 ...

 Parameters

 var1 : array_like
 Array_like means all those objects -- lists, nested lists,
 etc. -- that can be converted to an array. We can also
 refer to variables like `var1`.
 var2 : int
 The type above can either refer to an actual Python type
 (e.g. ``int``), or describe the type of the variable in more
 detail, e.g. ``(N,) ndarray`` or ``array_like``.
 long_variable_name : {'hi', 'ho'}, optional
 Choices in brackets, default first when optional.

 ...

 """
 var2.| # complete here

A little history

The Star Wars Jedi are awesome. My Jedi software tries to imitate a little bit
of the precognition the Jedi have. There’s even an awesome scene [https://youtu.be/yHRJLIf7wMU] of Monty Python Jedis :-).

But actually the name hasn’t so much to do with Star Wars. It’s part of my
second name.

After I explained Guido van Rossum, how some parts of my auto-completion work,
he said (we drank a beer or two):

“Oh, that worries me…”

When it’s finished, I hope he’ll like it :-)

I actually started Jedi, because there were no good solutions available for VIM.
Most auto-completions just didn’t work well. The only good solution was PyCharm.
But I like my good old VIM. Rope was never really intended to be an
auto-completion (and also I really hate project folders for my Python scripts).
It’s more of a refactoring suite. So I decided to do my own version of a
completion, which would execute non-dangerous code. But I soon realized, that
this wouldn’t work. So I built an extremely recursive thing which understands
many of Python’s key features.

By the way, I really tried to program it as understandable as possible. But I
think understanding it might need quite some time, because of its recursive
nature.

API Overview

Note: This documentation is for Plugin developers, who want to improve their
editors/IDE autocompletion

If you want to use Jedi, you first need to import jedi. You then have
direct access to the Script. You can then call the functions
documented here. These functions return API classes.

Deprecations

The deprecation process is as follows:

	A deprecation is announced in the next major/minor release.

	We wait either at least a year & at least two minor releases until we remove
the deprecated functionality.

API Documentation

The API consists of a few different parts:

	The main starting points for complete/goto: Script and Interpreter

	Helpful functions: preload_module() and set_debug_function()

	API Result Classes

	Python Versions/Virtualenv Support with functions like
find_system_environments() and find_virtualenvs()

Static Analysis Interface

Jedi is a static analysis tool for Python that can be used in IDEs/editors.
Jedi has a focus on autocompletion and goto functionality. Jedi is fast and is
very well tested. It understands Python and stubs on a deep level.

Jedi has support for different goto functions. It’s possible to search for
references and list names in a Python file to get information about them.

Jedi uses a very simple API to connect with IDE’s. There’s a reference
implementation as a VIM-Plugin [https://github.com/davidhalter/jedi-vim],
which uses Jedi’s autocompletion. We encourage you to use Jedi in your IDEs.
Autocompletion in your REPL is also possible, IPython uses it natively and for
the CPython REPL you have to install it.

Here’s a simple example of the autocompletion feature:

>>> import jedi
>>> source = '''
... import json
... json.lo'''
>>> script = jedi.Script(source, path='example.py')
>>> script
<Script: 'example.py' ...>
>>> completions = script.complete(3, len('json.lo'))
>>> completions
[<Completion: load>, <Completion: loads>]
>>> print(completions[0].complete)
ad
>>> print(completions[0].name)
load

As you see Jedi is pretty simple and allows you to concentrate on writing a
good text editor, while still having very good IDE features for Python.

	
class jedi.Script(source=None, line=None, column=None, path=None, encoding='utf-8', sys_path=None, environment=None, _project=None)

	A Script is the base for completions, goto or whatever you want to do with
Jedi.

You can either use the source parameter or path to read a file.
Usually you’re going to want to use both of them (in an editor).

The script might be analyzed in a different sys.path than Jedi:

	if sys_path parameter is not None, it will be used as sys.path
for the script;

	if sys_path parameter is None and VIRTUAL_ENV environment
variable is defined, sys.path for the specified environment will be
guessed (see jedi.inference.sys_path.get_venv_path()) and used for
the script;

	otherwise sys.path will match that of Jedi.

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – The source code of the current file, separated by newlines.

	line (int [https://docs.python.org/3/library/functions.html#int]) – Deprecated, please use it directly on e.g. .complete

	column (int [https://docs.python.org/3/library/functions.html#int]) – Deprecated, please use it directly on e.g. .complete

	path (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The path of the file in the file system, or '' if
it hasn’t been saved yet.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – The encoding of source, if it is not a
unicode object (default 'utf-8').

	sys_path (list [https://docs.python.org/3/library/stdtypes.html#list]) – sys.path to use during analysis of the script

	environment (Environment) – TODO

	
complete(line=None, column=None, *args, **kwargs)

	Return classes.Completion objects. Those objects contain
information about the completions, more than just names.

	Parameters

	fuzzy – Default False. Will return fuzzy completions, which means
that e.g. ooa will match foobar.

	Returns

	Completion objects, sorted by name and __ comes last.

	Return type

	list of classes.Completion

	
infer(line=None, column=None, *args, **kwargs)

	Return the definitions of a the path under the cursor. goto function!
This follows complicated paths and returns the end, not the first
definition. The big difference between goto() and
infer() is that goto() doesn’t
follow imports and statements. Multiple objects may be returned,
because Python itself is a dynamic language, which means depending on
an option you can have two different versions of a function.

	Parameters

	
	only_stubs – Only return stubs for this goto call.

	prefer_stubs – Prefer stubs to Python objects for this type
inference call.

	Return type

	list of classes.Definition

	
goto(line=None, column=None, *args, **kwargs)

	Return the first definition found, while optionally following imports.
Multiple objects may be returned, because Python itself is a
dynamic language, which means depending on an option you can have two
different versions of a function.

	Parameters

	
	follow_imports – The goto call will follow imports.

	follow_builtin_imports – If follow_imports is True will decide if
it follow builtin imports.

	only_stubs – Only return stubs for this goto call.

	prefer_stubs – Prefer stubs to Python objects for this goto call.

	Return type

	list of classes.Definition

	
help(line=None, column=None, *args, **kwargs)

	Works like goto and returns a list of Definition objects. Returns
additional definitions for keywords and operators.

The additional definitions are of Definition(...).type == 'keyword'.
These definitions do not have a lot of value apart from their docstring
attribute, which contains the output of Python’s help() function.

	Return type

	list of classes.Definition

	
get_references(line=None, column=None, *args, **kwargs)

	Return classes.Definition objects, which contain all
names that point to the definition of the name under the cursor. This
is very useful for refactoring (renaming), or to show all references of
a variable.

	Parameters

	include_builtins – Default True, checks if a reference is a
builtin (e.g. sys) and in that case does not return it.

	Return type

	list of classes.Definition

	
get_signatures(line=None, column=None, *args, **kwargs)

	Return the function object of the call you’re currently in.

E.g. if the cursor is here:

abs(# <-- cursor is here

This would return the abs function. On the other hand:

abs()# <-- cursor is here

This would return an empty list..

	Return type

	list of classes.Signature

	
get_names(**kwargs)

	Returns a list of Definition objects, containing name parts.
This means you can call Definition.goto() and get the
reference of a name.

	Parameters

	
	all_scopes – If True lists the names of all scopes instead of only
the module namespace.

	definitions – If True lists the names that have been defined by a
class, function or a statement (a = b returns a).

	references – If True lists all the names that are not listed by
definitions=True. E.g. a = b returns b.

	
class jedi.Interpreter(source, namespaces, **kwds)

	Jedi API for Python REPLs.

In addition to completion of simple attribute access, Jedi
supports code completion based on static code analysis.
Jedi can complete attributes of object which is not initialized
yet.

>>> from os.path import join
>>> namespace = locals()
>>> script = Interpreter('join("").up', [namespace])
>>> print(script.complete()[0].name)
upper

Parse source and mixin interpreted Python objects from namespaces.

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Code to parse.

	namespaces (list of dict) – a list of namespace dictionaries such as the one
returned by locals() [https://docs.python.org/3/library/functions.html#locals].

Other optional arguments are same as the ones for Script.
If line and column are None, they are assumed be at the end of
source.

	
jedi.preload_module(*modules)

	Preloading modules tells Jedi to load a module now, instead of lazy parsing
of modules. Usful for IDEs, to control which modules to load on startup.

	Parameters

	modules – different module names, list of string.

	
jedi.set_debug_function(func_cb=<function print_to_stdout>, warnings=True, notices=True, speed=True)

	Define a callback debug function to get all the debug messages.

If you don’t specify any arguments, debug messages will be printed to stdout.

	Parameters

	func_cb – The callback function for debug messages, with n params.

Environments

Environments are a way to activate different Python versions or Virtualenvs for
static analysis. The Python binary in that environment is going to be executed.

	
jedi.find_system_environments()

	Ignores virtualenvs and returns the Python versions that were installed on
your system. This might return nothing, if you’re running Python e.g. from
a portable version.

The environments are sorted from latest to oldest Python version.

	Yields

	Environment

	
jedi.find_virtualenvs(paths=None, **kwargs)

	
	Parameters

	
	paths – A list of paths in your file system to be scanned for
Virtualenvs. It will search in these paths and potentially execute the
Python binaries.

	safe – Default True. In case this is False, it will allow this
function to execute potential python environments. An attacker might
be able to drop an executable in a path this function is searching by
default. If the executable has not been installed by root, it will not
be executed.

	use_environment_vars – Default True. If True, the VIRTUAL_ENV
variable will be checked if it contains a valid VirtualEnv.
CONDA_PREFIX will be checked to see if it contains a valid conda
environment.

	Yields

	Environment

	
jedi.get_system_environment(version)

	Return the first Python environment found for a string of the form ‘X.Y’
where X and Y are the major and minor versions of Python.

	Raises

	InvalidPythonEnvironment

	Returns

	Environment

	
jedi.create_environment(path, safe=True)

	Make it possible to manually create an Environment object by specifying a
Virtualenv path or an executable path.

	Raises

	InvalidPythonEnvironment

	Returns

	Environment

	
jedi.get_default_environment()

	Tries to return an active Virtualenv or conda environment.
If there is no VIRTUAL_ENV variable or no CONDA_PREFIX variable set
set it will return the latest Python version installed on the system. This
makes it possible to use as many new Python features as possible when using
autocompletion and other functionality.

	Returns

	Environment

	
exception jedi.InvalidPythonEnvironment

	If you see this exception, the Python executable or Virtualenv you have
been trying to use is probably not a correct Python version.

	
class jedi.api.environment.Environment(executable)

	This class is supposed to be created by internal Jedi architecture. You
should not create it directly. Please use create_environment or the other
functions instead. It is then returned by that function.

	
get_sys_path(*args, **kwargs)

	The sys path for this environment. Does not include potential
modifications like sys.path.append.

	Returns

	list of str

Examples

Completions:

>>> import jedi
>>> source = '''import json; json.l'''
>>> script = jedi.Script(source, path='')
>>> script
<jedi.api.Script object at 0x2121b10>
>>> completions = script.complete(1, 19)
>>> completions
[<Completion: load>, <Completion: loads>]
>>> completions[1]
<Completion: loads>
>>> completions[1].complete
'oads'
>>> completions[1].name
'loads'

Definitions / Goto:

>>> import jedi
>>> source = '''def my_func():
... print 'called'
...
... alias = my_func
... my_list = [1, None, alias]
... inception = my_list[2]
...
... inception()'''
>>> script = jedi.Script(source, path='')
>>>
>>> script.goto(8, 1)
[<Definition inception=my_list[2]>]
>>>
>>> script.infer(8, 1)
[<Definition def my_func>]

References:

>>> import jedi
>>> source = '''x = 3
... if 1 == 2:
... x = 4
... else:
... del x'''
>>> script = jedi.Script(source, '')
>>> rns = script.get_references(5, 8)
>>> rns
[<Definition full_name='__main__.x', description='x = 3'>,
 <Definition full_name='__main__.x', description='x'>]
>>> rns[1].line
5
>>> rns[0].column
8

API Return Classes

The jedi.api.classes module contains the return classes of the API.
These classes are the much bigger part of the whole API, because they contain
the interesting information about completion and goto operations.

	
jedi.api.classes.defined_names(inference_state, context)

	List sub-definitions (e.g., methods in class).

	Return type

	list of Definition

	
class jedi.api.classes.BaseDefinition(inference_state, name)

	
	
module_path

	Shows the file path of a module. e.g. /usr/lib/python2.7/os.py

	
name

	Name of variable/function/class/module.

For example, for x = None it returns 'x'.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]

	
type

	The type of the definition.

Here is an example of the value of this attribute. Let’s consider
the following source. As what is in variable is unambiguous
to Jedi, jedi.Script.infer() should return a list of
definition for sys, f, C and x.

>>> from jedi._compatibility import no_unicode_pprint
>>> from jedi import Script
>>> source = '''
... import keyword
...
... class C:
... pass
...
... class D:
... pass
...
... x = D()
...
... def f():
... pass
...
... for variable in [keyword, f, C, x]:
... variable'''

>>> script = Script(source)
>>> defs = script.infer()

Before showing what is in defs, let’s sort it by line
so that it is easy to relate the result to the source code.

>>> defs = sorted(defs, key=lambda d: d.line)
>>> no_unicode_pprint(defs) # doctest: +NORMALIZE_WHITESPACE
[<Definition full_name='keyword', description='module keyword'>,
 <Definition full_name='__main__.C', description='class C'>,
 <Definition full_name='__main__.D', description='instance D'>,
 <Definition full_name='__main__.f', description='def f'>]

Finally, here is what you can get from type:

>>> defs = [str(d.type) for d in defs] # It's unicode and in Py2 has u before it.
>>> defs[0]
'module'
>>> defs[1]
'class'
>>> defs[2]
'instance'
>>> defs[3]
'function'

Valid values for are module, class, instance, function,
param, path and keyword.

	
module_name

	The module name.

>>> from jedi import Script
>>> source = 'import json'
>>> script = Script(source, path='example.py')
>>> d = script.infer()[0]
>>> print(d.module_name) # doctest: +ELLIPSIS
json

	
in_builtin_module()

	Whether this is a builtin module.

	
line

	The line where the definition occurs (starting with 1).

	
column

	The column where the definition occurs (starting with 0).

	
docstring(raw=False, fast=True)

	Return a document string for this completion object.

Example:

>>> from jedi import Script
>>> source = '''\
... def f(a, b=1):
... "Document for function f."
... '''
>>> script = Script(source, path='example.py')
>>> doc = script.infer(1, len('def f'))[0].docstring()
>>> print(doc)
f(a, b=1)
<BLANKLINE>
Document for function f.

Notice that useful extra information is added to the actual
docstring. For function, it is signature. If you need
actual docstring, use raw=True instead.

>>> print(script.infer(1, len('def f'))[0].docstring(raw=True))
Document for function f.

	Parameters

	fast – Don’t follow imports that are only one level deep like
import foo, but follow from foo import bar. This makes
sense for speed reasons. Completing import a is slow if you use
the foo.docstring(fast=False) on every object, because it
parses all libraries starting with a.

	
description

	A description of the Definition object, which is heavily used
in testing. e.g. for isinstance it returns def isinstance.

Example:

>>> from jedi._compatibility import no_unicode_pprint
>>> from jedi import Script
>>> source = '''
... def f():
... pass
...
... class C:
... pass
...
... variable = f if random.choice([0,1]) else C'''
>>> script = Script(source) # line is maximum by default
>>> defs = script.infer(column=3)
>>> defs = sorted(defs, key=lambda d: d.line)
>>> no_unicode_pprint(defs) # doctest: +NORMALIZE_WHITESPACE
[<Definition full_name='__main__.f', description='def f'>,
 <Definition full_name='__main__.C', description='class C'>]
>>> str(defs[0].description) # strip literals in python2
'def f'
>>> str(defs[1].description)
'class C'

	
full_name

	Dot-separated path of this object.

It is in the form of <module>[.<submodule>[...]][.<object>].
It is useful when you want to look up Python manual of the
object at hand.

Example:

>>> from jedi import Script
>>> source = '''
... import os
... os.path.join'''
>>> script = Script(source, path='example.py')
>>> print(script.infer(3, len('os.path.join'))[0].full_name)
os.path.join

Notice that it returns 'os.path.join' instead of (for example)
'posixpath.join'. This is not correct, since the modules name would
be <module 'posixpath' ...>`. However most users find the latter
more practical.

	
is_stub()

	

	
goto(**kwargs)

	

	
goto_assignments(**kwargs)

	

	
infer(**kwargs)

	

	
params

	Deprecated! Will raise a warning soon. Use get_signatures()[…].params.

Raises an AttributeError if the definition is not callable.
Otherwise returns a list of Definition that represents the params.

	
parent()

	

	
get_line_code(before=0, after=0)

	Returns the line of code where this object was defined.

	Parameters

	
	before – Add n lines before the current line to the output.

	after – Add n lines after the current line to the output.

	Return str

	Returns the line(s) of code or an empty string if it’s a
builtin.

	
get_signatures()

	

	
execute()

	

	
class jedi.api.classes.Completion(inference_state, name, stack, like_name_length, is_fuzzy, cached_name=None)

	Completion objects are returned from api.Script.complete(). They
provide additional information about a completion.

	
complete

	Only works with non-fuzzy completions. Returns None if fuzzy
completions are used.

Return the rest of the word, e.g. completing isinstance:

isinstan# <-- Cursor is here

would return the string ‘ce’. It also adds additional stuff, depending
on your settings.py.

Assuming the following function definition:

def foo(param=0):
 pass

completing foo(par would give a Completion which complete
would be am=

	
name_with_symbols

	Similar to name, but like name returns also the
symbols, for example assuming the following function definition:

def foo(param=0):
 pass

completing foo(would give a Completion which
name_with_symbols would be “param=”.

	
docstring(raw=False, fast=True)

	Return a document string for this completion object.

Example:

>>> from jedi import Script
>>> source = '''\
... def f(a, b=1):
... "Document for function f."
... '''
>>> script = Script(source, path='example.py')
>>> doc = script.infer(1, len('def f'))[0].docstring()
>>> print(doc)
f(a, b=1)
<BLANKLINE>
Document for function f.

Notice that useful extra information is added to the actual
docstring. For function, it is signature. If you need
actual docstring, use raw=True instead.

>>> print(script.infer(1, len('def f'))[0].docstring(raw=True))
Document for function f.

	Parameters

	fast – Don’t follow imports that are only one level deep like
import foo, but follow from foo import bar. This makes
sense for speed reasons. Completing import a is slow if you use
the foo.docstring(fast=False) on every object, because it
parses all libraries starting with a.

	
type

	

	
follow_definition(*args, **kwargs)

	Deprecated!

Return the original definitions. I strongly recommend not using it for
your completions, because it might slow down Jedi. If you want to
read only a few objects (<=20), it might be useful, especially to get
the original docstrings. The basic problem of this function is that it
follows all results. This means with 1000 completions (e.g. numpy),
it’s just PITA-slow.

	
class jedi.api.classes.Definition(inference_state, definition)

	Definition objects are returned from api.Script.goto()
or api.Script.infer().

	
desc_with_module

	In addition to the definition, also return the module.

Warning

Don’t use this function yet, its behaviour may change. If
you really need it, talk to me.

	
defined_names(*args, **kwargs)

	List sub-definitions (e.g., methods in class).

	Return type

	list of Definition

	
is_definition()

	Returns True, if defined as a name in a statement, function or class.
Returns False, if it’s a reference to such a definition.

	
class jedi.api.classes.BaseSignature(inference_state, signature)

	BaseSignature objects is the return value of Script.function_definition.
It knows what functions you are currently in. e.g. isinstance(would
return the isinstance function. without (it would return nothing.

	
params

	
	Return list of ParamDefinition

	

	
to_string()

	

	
class jedi.api.classes.Signature(inference_state, signature, call_details)

	Signature objects is the return value of Script.get_signatures.
It knows what functions you are currently in. e.g. isinstance(would
return the isinstance function with its params. Without (it would
return nothing.

	
index

	The Param index of the current call.
Returns None if the index cannot be found in the curent call.

	
bracket_start

	The line/column of the bracket that is responsible for the last
function call.

	
class jedi.api.classes.ParamDefinition(inference_state, definition)

	
	
infer_default()

	
	Return list of Definition

	

	
infer_annotation(**kwargs)

	
	Return list of Definition

	

	Parameters

	execute_annotation – If False, the values are not executed and
you get classes instead of instances.

	
to_string()

	

	
kind

	Returns an enum instance. Returns the same values as the builtin
inspect.Parameter.kind [https://docs.python.org/3/library/inspect.html#inspect.Parameter.kind].

No support for Python < 3.4 anymore.

Settings

This module contains variables with global Jedi settings. To change the
behavior of Jedi, change the variables defined in jedi.settings.

Plugins should expose an interface so that the user can adjust the
configuration.

Example usage:

from jedi import settings
settings.case_insensitive_completion = True

Completion output

	
jedi.settings.case_insensitive_completion = True

	The completion is by default case insensitive.

	
jedi.settings.add_bracket_after_function = False

	Adds an opening bracket after a function, because that’s normal behaviour.
Removed it again, because in VIM that is not very practical.

Filesystem cache

	
jedi.settings.cache_directory = '/home/docs/.cache/jedi'

	The path where the cache is stored.

On Linux, this defaults to ~/.cache/jedi/, on OS X to
~/Library/Caches/Jedi/ and on Windows to %APPDATA%\Jedi\Jedi\.
On Linux, if environment variable $XDG_CACHE_HOME is set,
$XDG_CACHE_HOME/jedi is used instead of the default one.

Parser

	
jedi.settings.fast_parser = True

	Use the fast parser. This means that reparsing is only being done if
something has been changed e.g. to a function. If this happens, only the
function is being reparsed.

Dynamic stuff

	
jedi.settings.dynamic_array_additions = True

	check for append, etc. on arrays: [], {}, () as well as list/set calls.

	
jedi.settings.dynamic_params = True

	A dynamic param completion, finds the callees of the function, which define
the params of a function.

	
jedi.settings.dynamic_params_for_other_modules = True

	Do the same for other modules.

	
jedi.settings.auto_import_modules = ['gi']

	Modules that are not analyzed but imported, although they contain Python code.
This improves autocompletion for libraries that use setattr or
globals() modifications a lot.

Caching

	
jedi.settings.call_signatures_validity = 3.0

	Finding function calls might be slow (0.1-0.5s). This is not acceptible for
normal writing. Therefore cache it for a short time.

Jedi Development

Note

This documentation is for Jedi developers who want to improve Jedi
itself, but have no idea how Jedi works. If you want to use Jedi for
your IDE, look at the plugin api.
It is also important to note that it’s a pretty old version and some things
might not apply anymore.

Introduction

This page tries to address the fundamental demand for documentation of the
Jedi internals. Understanding a dynamic language is a complex task. Especially
because type inference in Python can be a very recursive task. Therefore Jedi
couldn’t get rid of complexity. I know that simple is better than complex,
but unfortunately it sometimes requires complex solutions to understand complex
systems.

Since most of the Jedi internals have been written by me (David Halter), this
introduction will be written mostly by me, because no one else understands to
the same level how Jedi works. Actually this is also the reason for exactly this
part of the documentation. To make multiple people able to edit the Jedi core.

In five chapters I’m trying to describe the internals of Jedi:

	The Jedi Core

	Core Extensions

	Imports & Modules

	Caching & Recursions

	Helper modules

Note

Testing is not documented here, you’ll find that
right here.

The Jedi Core

The core of Jedi consists of three parts:

	Parser

	Python type inference

	API

Most people are probably interested in type inference,
because that’s where all the magic happens. I need to introduce the parser first, because jedi.inference uses it extensively.

Parser

Jedi used to have it’s internal parser, however this is now a separate project
and is called parso [http://parso.readthedocs.io].

The parser creates a syntax tree that Jedi analyses and tries to understand.
The grammar that this parsers uses is very similar to the official Python
grammar files [https://docs.python.org/3/reference/grammar.html].

Type inference of python code (inference/__init__.py)

Type inference of Python code in Jedi is based on three assumptions:

	The code uses as least side effects as possible. Jedi understands certain
list/tuple/set modifications, but there’s no guarantee that Jedi detects
everything (list.append in different modules for example).

	No magic is being used:

	metaclasses

	setattr() / __import__()

	writing to globals(), locals(), object.__dict__

	The programmer is not a total dick, e.g. like this [https://github.com/davidhalter/jedi/issues/24] :-)

The actual algorithm is based on a principle I call lazy type inference. That
said, the typical entry point for static analysis is calling
infer_expr_stmt. There’s separate logic for autocompletion in the API, the
inference_state is all about inferring an expression.

TODO this paragraph is not what jedi does anymore, it’s similar, but not the
same.

Now you need to understand what follows after infer_expr_stmt. Let’s
make an example:

import datetime
datetime.date.toda# <-- cursor here

First of all, this module doesn’t care about completion. It really just cares
about datetime.date. At the end of the procedure infer_expr_stmt will
return the date class.

To visualize this (simplified):

	InferenceState.infer_expr_stmt doesn’t do much, because there’s no assignment.

	Context.infer_node cares for resolving the dotted path

	InferenceState.find_types searches for global definitions of datetime, which
it finds in the definition of an import, by scanning the syntax tree.

	Using the import logic, the datetime module is found.

	Now find_types is called again by infer_node to find date
inside the datetime module.

Now what would happen if we wanted datetime.date.foo.bar? Two more
calls to find_types. However the second call would be ignored, because the
first one would return nothing (there’s no foo attribute in date).

What if the import would contain another ExprStmt like this:

from foo import bar
Date = bar.baz

Well… You get it. Just another infer_expr_stmt recursion. It’s really
easy. Python can obviously get way more complicated then this. To understand
tuple assignments, list comprehensions and everything else, a lot more code had
to be written.

Jedi has been tested very well, so you can just start modifying code. It’s best
to write your own test first for your “new” feature. Don’t be scared of
breaking stuff. As long as the tests pass, you’re most likely to be fine.

I need to mention now that lazy type inference is really good because it
only inferes what needs to be inferred. All the statements and modules
that are not used are just being ignored.

Inference Values (inference/base_value.py)

Values are the “values” that Python would return. However Values are at the
same time also the “values” that a user is currently sitting in.

A ValueSet is typically used to specify the return of a function or any other
static analysis operation. In jedi there are always multiple returns and not
just one.

Name resolution (inference/finder.py)

Searching for names with given scope and name. This is very central in Jedi and
Python. The name resolution is quite complicated with descripter,
__getattribute__, __getattr__, global, etc.

If you want to understand name resolution, please read the first few chapters
in http://blog.ionelmc.ro/2015/02/09/understanding-python-metaclasses/.

Flow checks

Flow checks are not really mature. There’s only a check for isinstance. It
would check whether a flow has the form of if isinstance(a, type_or_tuple).
Unfortunately every other thing is being ignored (e.g. a == ‘’ would be easy to
check for -> a is a string). There’s big potential in these checks.

API (api/__init__.py and api/classes.py)

The API has been designed to be as easy to use as possible. The API
documentation can be found here. The API itself contains
little code that needs to be mentioned here. Generally I’m trying to be
conservative with the API. I’d rather not add new API features if they are not
necessary, because it’s much harder to deprecate stuff than to add it later.

Core Extensions

Core Extensions is a summary of the following topics:

	Iterables & Dynamic Arrays

	Dynamic Parameters

	Docstrings

	Refactoring

These topics are very important to understand what Jedi additionally does, but
they could be removed from Jedi and Jedi would still work. But slower and
without some features.

Iterables & Dynamic Arrays (inference/value/iterable.py)

To understand Python on a deeper level, Jedi needs to understand some of the
dynamic features of Python like lists that are filled after creation:

Contains all classes and functions to deal with lists, dicts, generators and
iterators in general.

Parameter completion (inference/dynamic.py)

Docstrings (inference/docstrings.py)

Docstrings are another source of information for functions and classes.
jedi.inference.dynamic tries to find all executions of functions, while
the docstring parsing is much easier. There are three different types of
docstrings that Jedi understands:

	Sphinx [http://sphinx-doc.org/markup/desc.html#info-field-lists]

	Epydoc [http://epydoc.sourceforge.net/manual-fields.html]

	Numpydoc [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]

For example, the sphinx annotation :type foo: str clearly states that the
type of foo is str.

As an addition to parameter searching, this module also provides return
annotations.

Refactoring (inference/refactoring.py)

THIS is not in active development, please check
https://github.com/davidhalter/jedi/issues/667 first before editing.

Introduce some basic refactoring functions to Jedi. This module is still in a
very early development stage and needs much testing and improvement.

Warning

I won’t do too much here, but if anyone wants to step in, please
do. Refactoring is none of my priorities

It uses the Jedi API and supports currently the
following functions (sometimes bug-prone):

	rename

	extract variable

	inline variable

Imports & Modules

	Modules [https://docs.python.org/3/library/modules.html#modules]

	Builtin Modules

	Imports

Compiled Modules (inference/compiled.py)

Imports (inference/imports.py)

jedi.inference.imports is here to resolve import statements and return
the modules/classes/functions/whatever, which they stand for. However there’s
not any actual importing done. This module is about finding modules in the
filesystem. This can be quite tricky sometimes, because Python imports are not
always that simple.

This module uses imp for python up to 3.2 and importlib for python 3.3 on; the
correct implementation is delegated to _compatibility.

This module also supports import autocompletion, which means to complete
statements like from datetim (cursor at the end would return datetime).

Caching & Recursions

	Caching

	Recursions

Caching (cache.py)

This caching is very important for speed and memory optimizations. There’s
nothing really spectacular, just some decorators. The following cache types are
available:

	time_cache can be used to cache something for just a limited time span,
which can be useful if there’s user interaction and the user cannot react
faster than a certain time.

This module is one of the reasons why Jedi is not thread-safe. As you can see
there are global variables, which are holding the cache information. Some of
these variables are being cleaned after every API usage.

Recursions (recursion.py)

Recursions are the recipe of Jedi to conquer Python code. However, someone
must stop recursions going mad. Some settings are here to make Jedi stop at
the right time. You can read more about them here.

Next to jedi.inference.cache this module also makes Jedi not
thread-safe. Why? execution_recursion_decorator uses class variables to
count the function calls.

Settings

Recursion settings are important if you don’t want extremly
recursive python code to go absolutely crazy.

The default values are based on experiments while completing the Jedi library
itself (inception!). But I don’t think there’s any other Python library that
uses recursion in a similarly extreme way. Completion should also be fast and
therefore the quality might not always be maximal.

	
jedi.inference.recursion.recursion_limit = 15

	Like sys.getrecursionlimit(), just for Jedi.

	
jedi.inference.recursion.total_function_execution_limit = 200

	This is a hard limit of how many non-builtin functions can be executed.

	
jedi.inference.recursion.per_function_execution_limit = 6

	The maximal amount of times a specific function may be executed.

	
jedi.inference.recursion.per_function_recursion_limit = 2

	A function may not be executed more than this number of times recursively.

Helper Modules

Most other modules are not really central to how Jedi works. They all contain
relevant code, but you if you understand the modules above, you pretty much
understand Jedi.

Python 2/3 compatibility (_compatibility.py)

To ensure compatibility from Python 2.7 - 3.x, a module has been
created. Clearly there is huge need to use conforming syntax.

Jedi Testing

The test suite depends on tox and pytest:

pip install tox pytest

To run the tests for all supported Python versions:

tox

If you want to test only a specific Python version (e.g. Python 2.7), it’s as
easy as:

tox -e py27

Tests are also run automatically on Travis CI [https://travis-ci.org/davidhalter/jedi/].

You want to add a test for Jedi? Great! We love that. Normally you should
write your tests as Blackbox Tests. Most tests would
fit right in there.

For specific API testing we’re using simple unit tests, with a focus on a
simple and readable testing structure.

Blackbox Tests (run.py)

Refactoring Tests (refactor.py)

Refactoring tests work a little bit similar to Black Box tests. But the idea is
here to compare two versions of code. Note: Refactoring is currently not in
active development (and was never stable), the tests are therefore not really
valuable - just ignore them.

 Python Module Index

 j |
 t

 		 	

 		
 j	

 	[image: -]
 	
 jedi	

 	
 	
 jedi._compatibility	

 	
 	
 jedi.api.classes	

 	
 	
 jedi.api.environment	

 	
 	
 jedi.api.replstartup	

 	
 	
 jedi.cache	

 	
 	
 jedi.inference	

 	
 	
 jedi.inference.base_value	

 	
 	
 jedi.inference.compiled	

 	
 	
 jedi.inference.docstrings	

 	
 	
 jedi.inference.finder	

 	
 	
 jedi.inference.imports	

 	
 	
 jedi.inference.recursion	

 	
 	
 jedi.inference.value.iterable	

 	
 	
 jedi.refactoring	

 	
 	
 jedi.settings	

 		 	

 		
 t	

 	[image: -]
 	
 test	

 	
 	
 test.refactor	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T

A

 	
 	add_bracket_after_function (in module jedi.settings)

 	
 	auto_import_modules (in module jedi.settings)

B

 	
 	BaseDefinition (class in jedi.api.classes)

 	
 	BaseSignature (class in jedi.api.classes)

 	bracket_start (jedi.api.classes.Signature attribute)

C

 	
 	cache_directory (in module jedi.settings)

 	call_signatures_validity (in module jedi.settings)

 	case_insensitive_completion (in module jedi.settings)

 	column (jedi.api.classes.BaseDefinition attribute)

 	
 	complete (jedi.api.classes.Completion attribute)

 	complete() (jedi.Script method)

 	Completion (class in jedi.api.classes)

 	create_environment() (in module jedi)

D

 	
 	defined_names() (in module jedi.api.classes)

 	(jedi.api.classes.Definition method)

 	Definition (class in jedi.api.classes)

 	desc_with_module (jedi.api.classes.Definition attribute)

 	description (jedi.api.classes.BaseDefinition attribute)

 	
 	docstring() (jedi.api.classes.BaseDefinition method)

 	(jedi.api.classes.Completion method)

 	dynamic_array_additions (in module jedi.settings)

 	dynamic_params (in module jedi.settings)

 	dynamic_params_for_other_modules (in module jedi.settings)

E

 	
 	Environment (class in jedi.api.environment)

 	
 	execute() (jedi.api.classes.BaseDefinition method)

F

 	
 	fast_parser (in module jedi.settings)

 	find_system_environments() (in module jedi)

 	
 	find_virtualenvs() (in module jedi)

 	follow_definition() (jedi.api.classes.Completion method)

 	full_name (jedi.api.classes.BaseDefinition attribute)

G

 	
 	get_default_environment() (in module jedi)

 	get_line_code() (jedi.api.classes.BaseDefinition method)

 	get_names() (jedi.Script method)

 	get_references() (jedi.Script method)

 	get_signatures() (jedi.api.classes.BaseDefinition method)

 	(jedi.Script method)

 	
 	get_sys_path() (jedi.api.environment.Environment method)

 	get_system_environment() (in module jedi)

 	goto() (jedi.api.classes.BaseDefinition method)

 	(jedi.Script method)

 	goto_assignments() (jedi.api.classes.BaseDefinition method)

H

 	
 	help() (jedi.Script method)

I

 	
 	in_builtin_module() (jedi.api.classes.BaseDefinition method)

 	index (jedi.api.classes.Signature attribute)

 	infer() (jedi.api.classes.BaseDefinition method)

 	(jedi.Script method)

 	infer_annotation() (jedi.api.classes.ParamDefinition method)

 	
 	infer_default() (jedi.api.classes.ParamDefinition method)

 	Interpreter (class in jedi)

 	InvalidPythonEnvironment

 	is_definition() (jedi.api.classes.Definition method)

 	is_stub() (jedi.api.classes.BaseDefinition method)

J

 	
 	jedi (module), [1]

 	jedi._compatibility (module)

 	jedi.api.classes (module)

 	jedi.api.environment (module)

 	jedi.api.replstartup (module)

 	jedi.cache (module)

 	jedi.inference (module)

 	jedi.inference.base_value (module)

 	
 	jedi.inference.compiled (module)

 	jedi.inference.docstrings (module)

 	jedi.inference.finder (module)

 	jedi.inference.imports (module)

 	jedi.inference.recursion (module)

 	jedi.inference.value.iterable (module)

 	jedi.refactoring (module)

 	jedi.settings (module)

K

 	
 	kind (jedi.api.classes.ParamDefinition attribute)

L

 	
 	line (jedi.api.classes.BaseDefinition attribute)

M

 	
 	module_name (jedi.api.classes.BaseDefinition attribute)

 	
 	module_path (jedi.api.classes.BaseDefinition attribute)

N

 	
 	name (jedi.api.classes.BaseDefinition attribute)

 	
 	name_with_symbols (jedi.api.classes.Completion attribute)

P

 	
 	ParamDefinition (class in jedi.api.classes)

 	params (jedi.api.classes.BaseDefinition attribute)

 	(jedi.api.classes.BaseSignature attribute)

 	
 	parent() (jedi.api.classes.BaseDefinition method)

 	per_function_execution_limit (in module jedi.inference.recursion)

 	per_function_recursion_limit (in module jedi.inference.recursion)

 	preload_module() (in module jedi)

R

 	
 	recursion_limit (in module jedi.inference.recursion)

S

 	
 	Script (class in jedi)

 	set_debug_function() (in module jedi)

 	
 	setup_readline() (in module jedi.utils)

 	Signature (class in jedi.api.classes)

T

 	
 	test.refactor (module)

 	to_string() (jedi.api.classes.BaseSignature method)

 	(jedi.api.classes.ParamDefinition method)

 	
 	total_function_execution_limit (in module jedi.inference.recursion)

 	type (jedi.api.classes.BaseDefinition attribute)

 	(jedi.api.classes.Completion attribute)

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/logo.png
JEDI

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Jedi - an awesome autocompletion/static analysis library for Python

 		
 End User Usage

 		
 Editor Plugins

 		
 Tab Completion in the Python Shell

 		
 Using PYTHONSTARTUP

 		
 Using a custom $HOME/.pythonrc.py

 		
 Installation and Configuration

 		
 The normal way

 		
 With pip

 		
 System-wide installation via a package manager

 		
 Arch Linux

 		
 Debian

 		
 Others

 		
 Manual installation from GitHub

 		
 Inclusion as a submodule

 		
 Features and Caveats

 		
 General Features

 		
 Supported Python Features

 		
 Not Supported

 		
 Caveats

 		
 Recipes

 		
 Type Hinting

 		
 A little history

 		
 API Overview

 		
 Deprecations

 		
 API Documentation

 		
 Static Analysis Interface

 		
 Environments

 		
 Examples

 		
 API Return Classes

 		
 Settings

 		
 Completion output

 		
 Filesystem cache

 		
 Parser

 		
 Dynamic stuff

 		
 Caching

 		
 Jedi Development

 		
 Introduction

 		
 The Jedi Core

 		
 Parser

 		
 Type inference of python code (inference/__init__.py)

 		
 API (api/__init__.py and api/classes.py)

 		
 Core Extensions

 		
 Iterables & Dynamic Arrays (inference/value/iterable.py)

 		
 Parameter completion (inference/dynamic.py)

 		
 Docstrings (inference/docstrings.py)

 		
 Refactoring (inference/refactoring.py)

 		
 Imports & Modules

 		
 Compiled Modules (inference/compiled.py)

 		
 Imports (inference/imports.py)

 		
 Caching & Recursions

 		
 Caching (cache.py)

 		
 Recursions (recursion.py)

 		
 Helper Modules

 		
 Python 2/3 compatibility (_compatibility.py)

 		
 Jedi Testing

 		
 Blackbox Tests (run.py)

 		
 Refactoring Tests (refactor.py)

_images/screenshot_complete.png
1 from django.core import management
2b = [management]

3 utility = b[0].ManagementUtility()
4 utility.main_help_text().]]

lower function: _builtin__.str.lower

